ROS-I Americas Updates

Michael Ripperger

SwRI

SwRI Background

- Founded in 1947
- San Antonio, TX
- Independent, not-for-profit
- Applied R&D in Natural Sciences and Engineering
- FY 2022 Revenue: \$798M

SwRI Background

- 1500 acres
- 11 technical divisions
- 2.4 million sq. ft. of laboratories, test facilities
- ~2700 employees

SwRI Robotics

- Advanced robotics software
- Custom robotics
- Vehicle autonomy
- Machine vision and perception
- Industrial automation and controls
- System integration

ROS

ROS-I 10 Year Montage

https://www.youtube.com/watch?v=-6yAk05et1Q

Continue to foster collaboration

- In person conferences, training events, meetups
- Write ups and additional broader reach collaborative initiatives beyond the ROS community
 - American Welding Society
 - Founders' Society of Americas
 - Coaters' Association
 - Remanufacturing Industries Council
 - Manufacturing Innovation Institutes

ROSCon

- New Orleans, USA October 18-20
- Presented workshop on reachability analysis
 - <u>https://github.com/marip8/reach_roscon_2023</u>
- Focus topics:
 - mobile robotics/autonomy
 - real-time development
 - applications/deployment
- Continued discussion on DDS middleware optimization and debugging

https://github.com/ros-industrial/reach

 $https://github.com/ros-industrial/reach_ros2$

Upcoming Events

• Training

- Typically 3-4 times per year
- Cover ROS/ROS2 basics, various advanced topics
- Remote sessions possible
- Access to training material from all consortia
- ROS-I Americas Annual Meeting
 - March 2024
 - SwRI San Antonio, TX, USA

How to get capability on the floor

- Continued opportunity to leverage MII network for tech transition
- Many examples of Government/Industry partnerships that refine capabilities

Focused Technical Projects

- 2 active collaboration opportunities
- Require a member champion
- Send suggestions to your friendly Consortium Manager

ROS-I FTP Robotic Blending M5

- Reconfigurable Work Flow
- Characterization Based Path Planning for QA
- Improved 3D Segmentation
- Process Optimization
- Response to Human Cues
- Technology Transfer
- Integration and Testing

Software Improvements

- Calibration
- Tuning on human drawn boundaries
- Enabling stones

Software Progress

• Drawn Boundary Segmentation

- Final demonstration on production system at enduser 11/2024
- Operator interfaces
- High mix stainless/steel castings

Tesseract

tesseract

- Improved code coverage
- Improved memory allocation/run-time speed
- Improved collision reporting
- tesseract_planning
 - Planner profile interface refactor
 - Added time parameterization algorithms
 - Plugins for planning task composition
- trajopt
 - Continued port to IFOPT framework for more flexible constraint definition
- tesseract_qt
 - Improved Rviz widgets
 - Added introspection tools (trajectory playbook, state collision evaluation)
- tesseract_ros2
 - Reached parity with ROS1 interface

Global

Interpolator

Error Callback

https://github.com/tesseract-robotics

Robot Drivers in ROS 2

- Increased hardware support in ROS 2
 - MotoROS2 (controller native driver)
 - UR ROS 2 in Polyscope 6
 - https://www.youtube.com/watch?v=MgqfbjuHGrU
 - ABB EGM, ros2_control
 - https://github.com/PickNikRobotics/abb_ros2
 - Kawasaki KHI (potential port via Blending M5 FTP)
- Hardware Interfaces Working Group
 - Standardize interfaces
 - Define requirements
 - Work through compatibility/interoperability roadblocks

SWORD

- Leverage ROS-I tools in a CAD-based environment
- Cross-platform (Windows, Linux)
- Current capabilities
 - Create/export robot models (URDF)
 - Create convex hulls for collision models
 - Visualize kinematics
 - Define tool path
 - Perform motion planning with OMPL, Descartes, TrajOpt, etc.
 - Configure custom motion planning pipelines
- Capabilities under development
 - Generate tool paths using mesh and CAD data
 - Motion planning profile wizards
 - Export robot trajectories to deployable format
 - Reach study
- Beta test underway contact to participate

Optimized tool path for tracking accuracy and velocity

- ARM Institute project led by Rensselaer Polytechnic Institute (RPI) with GE, SwRI, and Yaskawa
 - Realized through pose optimization with redundancy resolution
 - Greedy motion primitive fitting (MoveL to MoveC)
 - Adjust blending zones and waypoint position based on trajectory error
 - Outputs for consumption into motion planner plug-in to Tesseract

Error Stats	Avg Error (mm)	Max Error (mm)	Min Error (mm)	Std Error (mm)	Avg Angle (rad)	Max Angle (rad)	Min Angle (rad)	Std Angle (rad)
Curve 1	0.0021	0.163	0.00038	0.03	0.0016	0.0061	0.00008	0.0014
Curve 2	0.094	0.436	0.0054	0.073	0.0027	0.0117	0.0005	0.0023
		https://arn	<u>ninstitute.c</u>	org/project	<u>s/optimizec</u>	l-robot-motio	<u>on-</u>	

program-for-tracking-complex-geometric-paths/

Open Additive Framework

- Open Flexible Additive Framework
- Merging of computational physics-bases analysis with planning

Write Up: <u>https://rosindustrial.org/news/2022/8/23/an-open-framework-for-additive-manufacturing</u> Video: <u>https://youtu.be/rxkLyYaazII</u>

Agility in advanced assembly applications

- The ConnTact Assembly Framework
 - Ability to enable researches to simply implement and test learning algorithms to test extensibility
 - Supported by NIST and the Agility Working Group

https://github.com/swri-robotics/ConnTact

Looking Forward

- Lower barrier to entry/improved usability
 - More GUI interfaces
 - More Python wrappers
 - More binary distributions
 - Expanded Windows compatibility
- ROS 1 to ROS 2 Port Considerations
 - Deliberate design effort
 - Improved documentation
 - Separation of ROS interfaces from core code to support ROS1/2, other frameworks
- On-going ports
 - REACH (complete, community contributed ROS2 port)
 - noether (on-going)
 - industrial_calibration (on-going)

	Save	2				
sh Modifier Tool P	ath Planner	Tool Pa	ool Path Modifier			
	•	Select				
neSlicerRasterPlanne	r					
Direction Generator	Origin Ge	enerator				
		•	Select			
FixedDirectionGene	rator					
FixedDirection	Generator					
Raster Planner						
Line Spacing	0.030			¢		
Point Spacing	0.015					
Minimum Hole Size	0.100			¢		
PlaneSlicerRaste	rPlanner –					

Form

_ 0 📀

Resources

- ROS-Industrial
 - Home: <u>rosindustrial.org</u>
 - Documentation: wiki.ros.org/industrial
 - Code:
 - https://github.com/ros-industrial
 - <u>https://github.com/ros-industrial-consortium</u>
 - Training: http://ros-industrial.github.io/industrial_training/
 - ROSin: <u>http://rosin-project.eu/</u>
- Upcoming Events (<u>https://rosindustrial.org/events-summary/</u>)
- SwRI
 - <u>https://robotics.swri.org</u>
 - YouTube Industrial Robotics Playlist

Michael Ripperger ROS-I Americas Tech Lead Southwest Research Institute <u>michael.ripperger@swri.org</u>

