
 

1 
 

ROS-I Training University of Applied Sciences Aachen 

By MASCOR  

 

TUTORIAL 5 

Mobile Robotics 

 

Introduction 

This tutorial explains how to use the ROS tool hector_slam for mapping and 

localization. Hector slam builds a map of the environment and simultaneously 

estimates the platform's 2D pose. 

 Commands and System variables are highlighted in grey boxes. 

 Lines beginning with ‡‡ indicates the syntax of these commands. 

Commands are executed in a terminal: 

 Open a new terminal → use the shortcut ctrl+alt+t.  

 Open a new tab inside an existing terminal → use the shortcut ctrl+shift+t. 

You can use the given links for further information. 

General approach 

A main problem in mobile robotics is localization and mapping. To estimate the robots 

position in an environment, you need some kind of map from this environment to 

dedicate the actual position in this environment. On the other hand you need the 

actual robots position to create a map related to its position. Therefor you can use 

SLAM – Simultaneous Localization and Mapping. ROS provides different packages to 

solve this problem: 

 2D: gmapping, hector_slam, ohm_tsd_slam… 

 3D: rgbdslam, ccny_rgbd, lsd_slam, rtabmap… 

For ground based robots it is often sufficient to use 2D SLAM to navigate through the 

environment. In the following tutorial hector_slam will be used, because it is very light 

weight in computation resources and creates the map completely based on a laser 

scan without any additional sensor input, like odometry, which is e.g. necessary for 

gmapping. A small disadvantage of hector_slam is that it does not include a closed 

loop approach, which means after achieving the initial position again this will not be 

considered. In the worst case a small error from the sensor uncertainty will sum up 

over a mapping process. 

 

Task 1: Startup the robot 

As the FH Rover robot you are using does not have any input devices or a monitor, 

we have to start it in another way. Luckily we can work remotely from a local 

workstation using SSH. SSH provides a secure communication channel over an 

unsecured network in a client-server architecture. It connects an SSH 

client application with an SSH server.  

https://en.wikipedia.org/wiki/Secure_channel
https://en.wikipedia.org/wiki/Client-server
https://en.wikipedia.org/wiki/SSH_client
https://en.wikipedia.org/wiki/SSH_client
https://en.wikipedia.org/wiki/SSH_server


 

2 
 

ROS-I Training University of Applied Sciences Aachen 

By MASCOR  

To establish a connection to a computer remotely, the username and the IP address 

of the remote computer must be known. Additionally, both the computers must be 

connected to the same network. In our case the name of the robots computer is 

“odroid” and the IP address is “192.168.2.200” or “192.168.2.201”. So the command 

to connect to it, is: 

ssh odroid@192.168.2.200  

You will be asked to enter the password of the remote account, which is “odroid” in 

this case. After the connection is established, the terminal should show the following 

line: 

odroid@odroid:~$  

This means you are actually working from the home directory of the robot. So you can 

start applications running on the processor of the robot now! Before doing this, it is 

recommended to start once the following process: 

screen 

Starting processes without screen is critical, if you once lose the wireless connection. 

If this happens, you have usually no chance to get your connection to the terminal 

back. Using screen it will reconnect, if possible. 

Now you can start your robot using a prepared launch file: 

roslaunch rover_bringup rover_bringup.launch 

This launch file will start: 

 The joy node as a driver for the gamepad 

 The laser scanner driver 

 A teleoperation node to convert the gamepad inputs in driving commands 

 The serial communication to the microcontroller, which will control the servo 

motors based on the created driving commands 

 The USB camera driver 

 A TF tree for the robot 

Now you should be able to drive around with the robot using the gamepad. 

Additionally to the wireless network, the workstation and the robot do also belong to 

the same ROS Network. Here the robot is defined as the Master system so that the 

local workstation can be used as part of the ROS system and communicate with the 

master. For example rviz can be used on the local machine in a new terminal to 

visualize the laser scan or the camera image running on the robot:  

rosrun rviz rviz  

Add one visualization element of type LaserScan and one Image to rivz and choose 

the specific topics /scan and /camera/image_raw. 

  Hint: set the fixed frame in rviz to “base_link” 

For further information to setup different systems in a ROS Network check the ROS wiki: 

(http://wiki.ros.org/ROS/NetworkSetup) 

(http://wiki.ros.org/ROS/EnvironmentVariables#ROS_MASTER_URI) 

 

http://wiki.ros.org/ROS/NetworkSetup
http://wiki.ros.org/ROS/EnvironmentVariables%23ROS_MASTER_URI


 

3 
 

ROS-I Training University of Applied Sciences Aachen 

By MASCOR  

Task 2: Start hector_slam 

If your robot is prepared to drive around, you can start now the SLAM process using 

hector_slam. The launch file hector_slam.launch shown below will start the process. 

 <?xml version="1.0"?>     
      
 <launch>     
      
 <node pkg="hector_mapping" type="hector_mapping" name="hector_mapping" output="screen">  
          
     <!-- Frame names -->     
     <param name="map_frame" value="map" />     
     <param name="base_frame" value="base_footprint" />     
     <param name="odom_frame" value="base_footprint" />     
           
     <!-- Topic names -->     
     <param name="scan_topic" value="scan" />           
       
     <!-- Tf use -->     
     <param name="use_tf_scan_transformation" value="true"/>     
     <param name="use_tf_pose_start_estimate" value="false"/>     
     <param name="pub_map_odom_transform" value="true"/>     
         
     <!-- Map size / start point -->     
     <param name="map_resolution" value="0.03"/>     
     <param name="map_size" value="1500"/>     
     <param name="map_start_x" value="0.5"/>     
     <param name="map_start_y" value="0.5" />     
     <param name="map_multi_res_levels" value="2" />     
          
     <!-- Map update parameters -->     
     <param name="update_factor_free" value="0.2"/>     
     <param name="update_factor_occupied" value="0.9" />         
     <param name="map_update_distance_thresh" value="0.4"/>     
     <param name="map_update_angle_thresh" value="0.06" />     
     <param name="map_pub_period" value="2.0" />     
          
     <!-- Advertising config -->     
     <param name="advertise_map_service" value="false"/>         
   </node>         
 </launch>     

For further information regarding the different parameters take a look at 

http://wiki.ros.org/hector_mapping.  

Start the launch file in a terminal on your robot: 

roslaunch rover_bringup hector_slam.launch  

  Hint: use a SSH connection 

The SLAM process will start now on the robot. You can check the actual map running 

rviz on your workstation computer, if it is not stilling running:  

rosrun rviz rviz  

Add a visualization element of type map to rivz and choose the specific topic /map.  

  Hint: set the fixed frame in rviz to “map” 

  

http://wiki.ros.org/hector_mapping


 

4 
 

ROS-I Training University of Applied Sciences Aachen 

By MASCOR  

Task 3: Storing the map 

If you are satisfied with your map you can store it. Therefore use the map_saver node 

of the package map_server. Name your map ipa_map. To save it, type in a new terminal 

on your workstation computer: 

rosrun map_server map_saver -f ipa_map  

Be aware that the map is stored related to your current path in the terminal 

(recommended: home directory). 

The map_saver node will create two files. One .pgm image file with the chosen map 

name – ipa_map.pgm in this case. An example is shown in figure 1. 

 
Figure 1: Image file of robotics lab FH Aachen map. 

In addition a .yaml file is created, also with the chosen map name. The .yaml file 

includes the information regarding the image file: 

image: (path_to)/example.pgm 
resolution: 0.050000 
origin: [-50.000000, -50.000000, 0.000000] 
negate: 0 
occupied_thresh: 0.65 
free_thresh: 0.196 

The image parameter includes the path to the specific .pgm image file. It is 

recommended to delete the path_to part. As long as the .pgm image file and the .yaml 

file are in the same directory, you will be able to move them in different locations on 

your system, otherwise you must change the path_to part again and again. Only 

change your image parameter! Your .yaml file should look like: 

image: arena.pgm 
resolution: 0.050000 
origin: [-50.000000, -50.000000, 0.000000] 
negate: 0 
occupied_thresh: 0.65 
free_thresh: 0.196 

The resolution parameter defines the conversion from pixel distance to metric 

distance. 



 

5 
 

ROS-I Training University of Applied Sciences Aachen 

By MASCOR  

The origin parameter defines the origin of your map and the position of your map 

frame. It is equal to the starting position during your mapping process. 

The occupied_tresh and the free_thresh parameters declare free and occupied areas 

in the map, based on the grey values of the image file. Between these thresholds the 

area is unknown. 

 

Task 4: Load your map 

 

If your map is saved, check first that all processes on your robot are shutdown. You 

can check it using: 

rosnode list  

The output should be empty, otherwise there are still running processes. In the next 

step start the roscore again on the robot as it is defined as the ROS Master! 

roscore 

  Hint: use a SSH connection 

Now start the map from your local workstation: 

rosrun map_server map_server ipa_map.yaml 

You can check your static map now in rviz again on your local workstation: 

rosrun rviz rviz  

Add a visualization element of type map to rivz and choose the specific topic /map.  

  Hint: set the fixed frame in rviz to “map” 


