

1

ROS-I Training University of Applied Sciences Aachen

By MASCOR

TUTORIAL 2

Collaborative Workspace

Introduction

This tutorial explains the basics of external sensor data implementation in the planning

scene of MoveIt.

 Commands and System variables are highlighted in grey boxes.

 Lines beginning with ‡‡ indicates the syntax of these commands.

Commands are executed in a terminal:

 Open a new terminal → use the shortcut ctrl+alt+t.

 Open a new tab inside an existing terminal → use the shortcut ctrl+shift+t.

You can use the given links for further information.

General approach

Various safety concepts exist in the industrial environment for collaborative

workspaces, which are even commercially available like camera based monitoring

systems. The system detects an intruder in the working area of the robot and stops

the running procedure. A more interesting scenario for collaboration is a direct joint

interaction between human co-worker and robot. A successful path planning with

colliding objects is generated using the described setup in figure 1. Therefore depth

data is used to detect colliding objects in the workspace of the robot.

Figure 1: Modules of the system architecture

2

ROS-I Training University of Applied Sciences Aachen

By MASCOR

Start the simulation

Task 1: Start the robot setup in Gazebo

The whole robot cell of the UR5 in front of you is available in Gazebo, including the

MoveIt components and the RGBD camera. To start the simulation type in a terminal:

roslaunch ur5_collision ur5_ipa_gazebo.launch

→ Gazebo and RViz should pop up.

Activate the visualization of the Pointcloud in RViz.

Task 2: Spawn a collision object

Spawn a collision object by typing in a new terminal:

roslaunch ur5_collision spawn_collision.launch

→ Currently the depth information is not provided in the planning scene to avoid

collisions (s. figure 2).

Figure 2: Collision Object (Left: RViz, Right: Gazebo)

Close all running processes before going on!

3

ROS-I Training University of Applied Sciences Aachen

By MASCOR

Implementation of Occupancy Map Updater

Task 3: Create a YAML configuration file

Create a YAML configuration file for configuring the depth sensors. An empty file exists

already in the package ur5_collision, you just have to adjust it.

Open a new terminal and type:

roscd ur5_collision/config

gedit sensor_point_cloud.yaml

Add the following lines (be aware to write in an indented block):

sensors:
 - sensor_plugin: occupancy_map_monitor/PointCloudOctomapUpdater
 point_cloud_topic: /camera/depth/points
 max_range: 4.0
 point_subsample: 1
 padding_offset: 0.09
 padding_scale: 1.0
 filtered_cloud_topic: filtered_cloud

Explanation of the parameters:

sensor_plugin: The name of the plugin that we are using.

point_cloud_topic: This specifies the topic to listen on for a point cloud.

max_range: Points further than this will not be used (in m).

point_subsample: Choose one of every point_subsample points.

padding_offset: The size of the padding (in cm).

padding_scale: The padding scale (in cm).

filtered_cloud_topic: The topic on which the filtered cloud will be published.

Task 4: Add the YAML file to the launch script

You have to include the config file in the moveit_sensor_manager.launch file of the package

ur5_collision. This file is normally auto-generated by the Setup Assistant. In a new

terminal type:

roscd ur5_collision/launch

gedit sensor_manager.launch.xml

Add the following lines into that file to configure the set of sensor sources for MoveIt:

<param name="octomap_frame" type="string" value="world" />
<param name="octomap_resolution" type="double" value="0.05" />
<param name="max_range" type="double" value="4.0" />

<rosparam command="load" file="$(find ur5_collision)/config/sensor_point_cloud.yaml" />

MoveIt uses an octree based framework to represent the world around it. The Octomap

parameters above are configuration parameters for this representation:

4

ROS-I Training University of Applied Sciences Aachen

By MASCOR

Explanation of the parameters:

octomap_frame: Specifies the coordinate frame in which this representation

will be stored.

octomap_resolution: specifies the resolution at which this representation is

maintained (in m).

max_range: specifies the maximum range value to be applied for any

sensor input to this node (in m).

Start the collaborative workspace

Task 5: Let the robot move

In a new terminal start the gazebo simulation:

roslaunch ur5_collision ur5_ipa_gazebo.launch

Let the robot move between two specific positions. Therefore, start in a new terminal

the ur5_move_node:

rosrun ur5_collision ur5_move_node

→ The robot should start moving now (s. figure 3).

Figure 3: Moving UR5

5

ROS-I Training University of Applied Sciences Aachen

By MASCOR

Task 6: Add a collision object:

Add again a collision object to the gazebo environment by writing in a new terminal:

 roslaunch ur5_collision spawn_collision.launch

→ The object should be recognized by the Occupancy Map Updater. In RViz it is

shown in form of blocked voxels (s. figure 4). These 3D spaces are avoided

during the path planning process.

Figure 4: Obstacle Detection (Right: RViz, Left: Gazebo)

Additional task:

Tune the parameters of the YAML config file and the octomap parameters to decrease

the necessary processing power, e.g. decrease the max_range of the depth data or the

resolution of the generated octomap.

