

1

ROS-I Training University of Applied Sciences Aachen

By MASCOR

TUTORIAL 4

Visual Servoing

Introduction

This tutorial explains how to move the robots TCP to a goal position provided by the

output of image processing.

 Commands and System variables are highlighted in grey boxes.

 Lines beginning with ‡‡ indicates the syntax of these commands.

Commands are executed in a terminal:

 Open a new terminal → use the shortcut ctrl+alt+t.

 Open a new tab inside an existing terminal → use the shortcut ctrl+shift+t.

You can use the given links for further information.

General approach

The combination of MoveIt with Image Processing can result in very high level

applications. Moveit! provides many functionalities for motion planning, pose or joint

goal setting, moving the robot, or adding or removing obstacle objects. The primary

interface to these functionalities is through the MoveGroup. In this example an AR Tag

will be used to provide a start and goal position based on the generated 6D pose by a

monocular camera and the ROS package AR Track Alvar. The generated positions will

be used as an input to set the goal position for MoveIt. The aim of this tutorial is to

move from one AR Tag to another one – of course the Tags can be moved in the field

of view of the camera so that the goal positions are not static, but dynamically

generated during runtime. This visual servoing will be done with the Aubo i5 and a

standard webcam – first in simulation like seen in figure 1, afterwards in real world.

Figure 1: Simulation and real world setup

2

ROS-I Training University of Applied Sciences Aachen

By MASCOR

Start the simulation

Task 1: Start the robot setup in Gazebo

The whole robot cell of the Aubo i5 in front of you is available in Gazebo including the

MoveIt components, the AR tags and the camera. To start the simulation type in a

terminal:

roslaunch aubo_ipa aubo_ipa_gazebo.launch

→ Gazebo and RViz should pop up (s. fig. 2).

Get the AR Tag position

Task 2: Create a TF listener

AR Track Alvar is doing most of the work for us. It provides the 6D pose of the marker

related to the camera and using TF we can create a static transform to our robot base

link. In the first step it is just necessary to read the pose generated from AR Tag Alvar.

Therefore you can use TF listener. In C++ this can be done using mainly one line of

code:

 listener.lookupTransform("/from_frame", "/to_frame",

 ros::Time(0), transform);

What does that mean?

 We want to look up the transform from /from_frame to /to_frame, which has to

be replaced by the frame names you are using now! To find the frames to look

up, you can use the ROS tool rqt_tf_tree:

rosrun rqt_tf_tree rqt_tf_tree

 Providing ros::Time(0) will just get us the latest available transform because

the transform is generated with a frequency of 30 Hz. The result will be stored

in the variable transform.

There is a file prepared to implement the TF listener for the Aubo. Open this file now

and be aware to make changes in the wrong place of the code:

Figure 2: Rviz and Gazebo Simulation of Aubo

3

ROS-I Training University of Applied Sciences Aachen

By MASCOR

roscd aubo_ipa/src

gedit aubo_marker.cpp

Add a TF listeners for the marker with the ID number 0 in the prepared try block.

Store the result of your transform in the variable named “transform”.

Start the simulation

Task 3: Initialize the MoveGroup

Using our transform, we can give MoveIt the results to plan to this position. The

MoveGroup can be easily setup using just the name of the group that needs to be

controlled and planning for. Do it in the dedicated space in the same source code file:

group = new MoveGroup("arm_group");

Set the pose of the AR marker as the pose goal for the robot:

approach.position.x = transform.getOrigin().y();

approach.position.y = transform.getOrigin().x();

For safety issues don’t adjust the z value of the target position. Use the current

orientation of the end-effector as the goal orientation:

approach.orientation = group->getCurrentPose().pose.orientation;

Real world implementation

Task 4: Static camera transform

Once you are done with the simulation, you can use the same functionality with a real

robot. Only a few adjustments are necessary like e.g. the real positioning of the

camera. Due to safety issues, ask your supervisor to show you the real robot

application.

