

1

ROS-I Training University of Applied Sciences Aachen

By MASCOR

TUTORIAL 3

Object detection

Introduction

This tutorial explains the basics of how to detect objects position in a camera scene

with ROS.

 Commands and System variables are highlighted in grey boxes.

 Lines beginning with ‡‡ indicates the syntax of these commands.

Commands are executed in a terminal:

 Open a new terminal → use the shortcut ctrl+alt+t.

 Open a new tab inside an existing terminal → use the shortcut ctrl+shift+t.

You can use the given links for further information.

General approach

In general there are a lot of different strategies to determine the position of an object

with ROS. For very simple geometries it is possible to use algorithms provided by the

image processing library OpenCV http://opencv.org/, which is very easy to include in

ROS projects http://wiki.ros.org/vision_opencv.

The 3D Point Cloud Library PCL http://pointclouds.org/ provides as well examples for

object recognition in 3D, which can easy be implemented in a ROS node

http://wiki.ros.org/perception_pcl.

If you don’t want to start from scratch, but use solutions already implemented in ROS,

there is also a couple of different ways:

 ViSP: The Visual Servoing Platform

ViSP allows visual tracking and visual servoing technics to track an object and estimate

its position. The ViSP library is the base for different ROS packages providing pattern-

based object trackers or moving edge trackers. It requires the object 3D model and

the object initial position to be able to track the object as shown in figure 1.

Figure 1: ViSP Model Based Tracking

http://opencv.org/
http://wiki.ros.org/vision_opencv
http://pointclouds.org/
http://wiki.ros.org/perception_pcl

2

ROS-I Training University of Applied Sciences Aachen

By MASCOR

For further information check the ROS wiki: http://wiki.ros.org/ar_track_alvar

 ORK: The Object Recognition Kitchen

The object recognition kitchen can run different object recognition pipelines like detect

textured, transparent or articulated objects in 3D. It provides powerful tools for data

capturing, training of object models and detection. A segmentation of a cube object

in a scene can be seen in figure 2.

For further information check the ROS wiki: http://wiki.ros.org/object_recognition

 Find object 2D

This ROS packages is a very simple to go solution to learn more complex objects very

fast. It provides a graphical interface for different OpenCV feature detectors and

descriptors. Using a monocular camera it will publish ID and position of a preliminary

learned object. Using RGBD sensors, it is as well possible to compute the 3D position

of the object.

For further information check the ROS wiki: http://wiki.ros.org/find_object_2d

 Alvar: An open source AR tag tracking library

One of the simplest ways to determine a 6D pose with a monocular camera is to use

the ROS package ar_track_alvar. You can prepare an object with an AR Tag of any

size and it is possible to identify and track the pose of individual AR tags shown in

figure 3.

Figure 3: AR Tags

For further information check the ROS wiki: http://wiki.ros.org/ar_track_alvar

Figure 2: Object Segmentation by Object Recognition Kitchen

http://wiki.ros.org/ar_track_alvar
http://wiki.ros.org/object_recognition
http://wiki.ros.org/find_object_2d
http://wiki.ros.org/ar_track_alvar

3

ROS-I Training University of Applied Sciences Aachen

By MASCOR

Using Alvar for AR Tag detection

Task 1: Preparation

Before we start, be sure your camera is plugged in and start the camera driver and

don’t forget to start the ROS Master:

roscore

And in a new terminal:

rosrun usb_cam usb_cam_node

The camera should be up (check the green status LED of the camera), but for proper

localization of the AR Tags, we need to calibrate the camera first. Fortunately ROS

supports us with a package for monocular camera calibration:

rosrun camera_calibration cameracalibrator.py --square 0.025 --size 9x6

image:=/usb_cam/image_raw camera:=/usb_cam

What do the different arguments of this line mean?

 rosrun: ROS command to start a single node

 camera_calibration: The ROS package for camera calibration

 cameracalibrator.py: The calibration node that will be executed

 square: Defines to use chessboard like calibration target with size in meters of

one chessboard square

 size: The counting of the interior corners of the checkerboard in NxM

 image: ROS image topic from the camera to calibrate

 camera: The namespace of the camera info topic for calibration

Running the command, a new window will pop up like shown in figure 4.

Figure 4: Calibration tool

Bars

X: left/right

Y: top/bottom

Size: fill full image

Skew: tilt

4

ROS-I Training University of Applied Sciences Aachen

By MASCOR

Task 2: Calibration process

To start the calibration process you will need the prepared chessboard from your

workspace with exactly the size of 0.025 m for the length of one chessboard square

border and a total amount of 9x6 interior corners of the checkerboard. It is important

to use a very flat calibration target in order to achieve correct calibration results.

For good calibration results you will need to move the checkerboard around in the

camera view such that:

 Checkerboard is on the camera's left, right, top and bottom of field of view

 Checkerboard filling the whole field of view

 Checkerboard tilted to the left, right, top and bottom (Skew)

Hint: At each step (s. fig. 5), hold the checkerboard still until the pattern is highlighted

in the calibration window.

When all 4 bars (X, Y, Size and Skew) are in green click on calibrate button. It may

take some time due to large amount of data to be processed. After the process is

completed, click on the save button.

The calibration is now done and in the next step we can run our camera using the

generated calibration file.

Figure 5: calibration steps

5

ROS-I Training University of Applied Sciences Aachen

By MASCOR

Task 3: Start calibrated camera

To start the camera using the calibration it is necessary to locate the calibration file

and to convert it in a readable format for the camera driver. Therefor copy the

generated calibration data (calibrationdata.tar.gz) from ~/tmp directory in the home

directory and extract it to a folder:

cp ~/tmp/calibrationdata.tar.gz ~/calibrationdata.tar.gz

tar –xvzf calibrationdata.tar.gz -C ~/calib

Rename the ost.txt file to calibtration.ini:

mv ~/calib/ost.txt ~/calib/calibration.ini

Afterwards convert the .ini file into a .yaml file, which can be read by the camera

driver. ROS delivers the conversion tool:

rosrun camera_calibration_parsers convert ~/calib/calibration.ini

~/calib/calibration.yml

Finally you have to copy this file to a different location, because the driver will load

the file from this location:

cp ~/calib/calibration.yml ~/.ros/camera_info/head_camera.yaml

Now start your camera again including the calibration, but be sure that the camera

driver was shut down before:

rosrun usb_cam usb_cam_node

To see the results of the calibration, it is for example possible to rectify the image

now. ROS can do that for you:

ROS_NAMESPACE=usb_cam rosrun image_proc image_proc

This node will subscribe to our raw image and the camera info topic, which includes

now the camera parameters provided by our calibration file. To see the resulting

rectified image, run in a separate terminal:

rosrun image_view image_view image:=usb_cam/image_rect_color

A popup will appear showing the rectified image of the camera.

6

ROS-I Training University of Applied Sciences Aachen

By MASCOR

Task 4: Detecting AR Tags

To detect the AR Tags now using the rectified camera image, the ROS AR Track Alvar

package has to be started using the correct arguments. The following launch file is

prepared for that. It will use the rectified image and is configured for the markers

located at your workspace.

 <?xml version="1.0" encoding="utf-8"?>

 <launch>
 <arg name="marker_size" default="15" />
 <arg name="max_new_marker_error" default="0.08" />
 <arg name="max_track_error" default="0.2" />
 <arg name="cam_image_topic" default="/usb_cam/image_raw" />
 <arg name="cam_info_topic" default="/usb_cam/camera_info" />
 <arg name="output_frame" default="/camera_link" />
 <arg name="max_frequency" default="10" />

 <node name="ar_track_alvar" pkg="ar_track_alvar" type="individualMarkersNoKinec
t" respawn="false" output="screen" args="$(arg marker_size) $(arg max_new_marker_er
ror) $(arg max_track_error) $(arg cam_image_topic) $(arg cam_info_topic) $(arg outp
ut_frame) $(arg max_frequency)">

 </node>
 </launch>

The following launch file is prepared for that. It will use the rectified image and is

configured for the markers located at your workspace. Start the launch file through:

roslaunch launch_it ar_track.launch

For more information on <arg> elements visit http://wiki.ros.org/roslaunch/XML/arg.

In figure 6 the different markers and their frame names are shown.

To see the augmented overlay of a detected marker including the generated 6D pose

related to the camera, rviz needs to be started:

rosrun rviz rviz

In rviz you need to add a camera visualization element and choose the rectified

camera image topic for it. Set fixed frame to head_camera and add additionally a TF

display. Move different AR Tags in the field of view and check the pose related to the

camera.

Figure 6: Marker frame names and origin

http://wiki.ros.org/roslaunch/XML/arg

