SAM|XL: Leveraging ROS for Aerospace Manufacturing Processes

Rik Tonnaer ROS-Industrial Conference Stuttgart

I. Introduction SAM|XL

- II. The challenge of automated aerospace manufacturing
- III. Use-case from GKN Fokker Aerospace

Smart Advanced Manufacturing XL

 Collaborative Research Centre in Delft, The Netherlands

Started by:

- Industrial partners from the aerospace industry
- TU Delft Aerospace Engineering
- TU Delft Cognitive Robotics

Mission:

 Contribute to Smart Manufacturing in Aerospace Companies

By Offering:

- Community
- 2000 m2 dedicated space
- Support and Expertise

Unique participation model focussed around different project types

- 1. Infrastructure Projects
 - Upgrade of toolbox
- 2. Proof-of-concept Projects
 - Generic technology trials for the community
- 3. Industrialisation Projects
 - Specific solutions ready for implementation at participant

- I. Introduction SAM|XL
- II. The challenge of automated aerospace manufacturing
- III. Use-case from GKN Fokker Aerospace

Why manufacturing in aerospace is a challenge

- Many different processes that almost always require:
 - Human dexterity,
 - Craftsmanship and
 - Adaptation to variations

Why manufacturing in aerospace is a challenge

Source: GKN Fokker Aerostructures "Along the bondline"

Why manufacturing in aerospace is a challenge

Source: Seattle Times

Boeing ditched the robots on its 777 line. Like Tesla, it needed the human touch

Source: Los Angeles Times

What makes Aerospace manufacturing challenging?

- Many different processes that almost always require:
 - Human dexterity,
 - · Craftsmanship and
 - Adaptation to variations
- Large part sizes
- Products/processes that are all kind of similar... (high mix)
- A long legacy of approved and certified processes
 - High quality and robustness requirements (Airworthiness Certification)

- I. Introduction SAM|XL
- II. Why manufacturing in aerospace is a challenge
- III. Use-Case from GKN Fokker Aerospace

Use-case: GKN Fokker - Drilling A350 Flap

Figure 9-3 Effect of Flaps on Landing Point

Use-case: GKN Fokker - Drilling A350 Flap

Automated Drilling Process

- Automated Drilling Unit (ADU):
 - Low craftsmanship involved
- Accuracy comes from jig and ADU
 - Drill-to-jig clearance: 0.20 mm

 Repetitive Task: not challenging for manufacturing staff

 Drilling remains the same, no need for process requalification

Other Aspects

Stations are used for multiple process steps. No fixed automation

solution possible

Crew is working

Environment (s equipment, per

g. debris,

Project Legacy and Goals

- Project already ongoing in different forms:
 - Manual cart with Cobot -> almost production ready
 - AGV with Cobot qualified up to TRL 5 by system integrator

- Goal:
 - Beginning 2021 first autonomous drilling system deployed (incl. autonomous "self-driving" capability) TRL 5 -> TRL 9
 - Scale-up soon after

System Concept

- Fleet of AGV/SDVs for transport
 - SLAM using (safety) lidar
 - Commercially available, different vendors
 - Most use ROS in their technology
 - CE marking remains a challenge
- Fleet of Integrated Drilling Systems for process
 - Custom integration
 - Cobot (e.g. UR, IIWA, FANUC, Doosan)
 - Electronic Automated Drilling Unit (Seti-Tec)
 - Safety and Communication Onboard
 - Limited Battery Life: media connection at drill stations
- Coordination nodes for planning and control

Process Logic

Multiple integrated drilling systems collaborate to finish the process.

- Multiple autonomous vehicles are used to transport the drilling systems from:
 - Service Bay-to-Flap Stations (6x), and from
 - drill location-to-drill location (aprox. 12x per flap station)
- Time on drill location estimate: 15-25 minutes. One AGV can "service" multiple drilling systems.
- Rough positioning of drill system by AGV
 - Positioning with lidar <1cm/<1deg
- Fine positioning comes from (optical) calibration on drill jig

Modularity aids development over time

Gradual ramp-up and complexity increase

- Start with one AGV + Cobot
- Gain knowledge, remove bugs
- Increase fleet:
 - Increase sophistication in coordination.
- Several ROS based modules with their specific responsibility

Summary

- SAM|XL supports to support aerospace manufacturing companies in their automation challenges
 - Later technology transfer to other industries

With knowledge, practical know-how and a relevant environment

- ROS is our platform of choice, to maximize reuse, collaboration and separation into functional components
- Ultimately we want participants to grow and develop together with us

Contact Information

Rik Tonnaer Lead Automated Manufacturing Engineer RTonnaer@samxl.com

+31 6 38 32 63 65

