ROS2 TRACING

300 - . , indigo-devel v.12.11 5 times

B message stamp -> after tf scan local_costmap/obstacle_layer-timestamp

mm after tf scan local_costmap/obstacle_layer-timestamp -> trigger update local_costmap-timestamp
250 - mmm trigger update local_costmap-timestamp -> local planner-timestamp

B local planner-timestamp -> /navigation_velocity smoother/raw_cmd_vel-timestamp

200 - -

150 -

100 -

50 -

Internal | CR/AEX3 | 2019-12-04 BOSCH
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

indigo-devel SYNC v.12.11 5 times

I message stamp -> after tf scan local_costmap/obstacle_layer-timestamp

B after tf scan local_costmap/obstacle layer-timestamp -> trigger update local costmap-timestamp
250 - I trigger update local_costmap-timestamp -> local planner-timestamp

B local planner-timestamp -> /navigation_velocity_smoother/raw_cmd_vel-timestamp

300 - .

0. after
150 -
100 -

50 -

Internal | CR/AEX3 | 2019-12-04
3 BOSCH
P e

Agenda

1. Problems in performance analysis and execution monitoring

2. What is tracing?

3. ros2_tracing
1. Installation
2. Getting Started
3. Built-in tracepoint recording and analysis

4. Custom tracepoint recording
4. Outlook

Internal | CR/AEX3 | 2019-12-04 BOSCH

ROS2 Tracing
Problems in performance analysis and execution monitoring

» Typical questions
» How long does my system take to react?
— Corollary: Is my system always reacting fast enough?

» How much resources is my system consuming > sizing compute hardware
— Corollary: Where does the resource use come from?

» Is my system still within its expected resource corridor?

» Complicating factors
» Distributed systems
— Many nodes running concurrently
» Repetitive periodic processing
— Not all of which are equal
» Performance Analysis: Low overhead important for correct data
» Execution Monitoring: Low overhead paramount

Internal | CR/AEX3 | 2019-12-04 BOSCH

ROS2 Tracing
What is tracing?

» Tracing: ,record information about system execution®

Configure
Instrument : Run System Analyse Data
Tracing

|

6 Internal | CR/AEX3 | 2019-12-04
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. @ BOSCH

ROS2 Tracing
What kind of information can we record?

Linux Events & BPF Support

Dyne_nmlc Tracepoints syscalls: PM_Cs
Tracing Linux 4.7 Linux 4.9
extd: Operating Svst sock: / zchic:i: cycles
A perating system / ask: 1 instructions
et signat: branch-*
Applications / / timer: L%
workqueue:
uPrObes System Librarie; / ki LLC-*
Linux 4.3
X System Call Interface / [4 CPU
Int t
VFS Sockets ¥ | scheduler y| mereonnec CPU
¥ File Systems TCP/UDP A 1
kprobes Volume M P) kmem:
Linux 4.1 4 Toume Tanager Virtual <— vmscan: Memory
’ Block Device‘ Interface Ethernet 4 Memory, writeback: Bus
Device Drivers
A4 / / A DRAM
jbd2: net: irq:
block: scsi: skb: T
mem-load
mem-store
BPI_= output | Software Events cpu-clock page-faults
Linux 4.4 Linux 4.9 cs migrations minor-faults
major-faults
BPF stacks J
Linux 4.9
1

Internal | CR/AEX3 | 2019-12-04

BOSCH

ROS2 Tracing

Example analyses: Brendan Gregg’s famous flame graphs

Flame Graph

ry_hand..

ry

o
E
=]
l
nz_
=
S

search_bina

[sys_clone

Function:

Source: http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

BOSCH

ROS2 Tracing
Tracepoints in ROS 2 (as of 12/2019)

» |nitialization User code
» Invocation: 7t relepp Executor
Node _ Subscription 7} | Publisher 51| Service 7F | Timer 51
rcl rcl_node rcl_subscription 7} | rcl_publisher rcl_service rcl_time
rmw rmw_node | rmw_subscription rmw_publisher | rmw_service
DDS Participant Reader Writer Service
Linux OS Kernel

» RMW-Layer is not very interesting, but could be added easily
» DDS has many implementations — not sure how to proceed here

9 Internal | CR/AEX3 | 2019-12-04

BOSCH
e

ROS2 Tracing
Static tracing

» Static tracing: Compile-time defined tracepoints in the source code, inserted by developers
» Pro: Encodes developer knowledge about what is important
» Pro: Has direct access to all the data
» Con: Takes effort to add for each tracepoint
» Con: Possibly dependent on specific tracing framework

TRACEPOINT_EVENT(
TRACEPOINT PROVIDER,
callback start,
TP_ARGS(
const void *, callback arg,
int, is_intra process_arg
)s

TP_FIELDS(void dispatch(

. sk
ctf_integer_hex(const void *, callback, callback_arg) std::shared_ptr<MessageT> message, const rmw_message_info_t & message_info)

{
TRACEPOINT(callback _start, (const wvoid *)this, false);

ctf_integer(int, is_intra_process, is_intra process_arg)
)
)R

Internal | CR/AEX3 | 2019-12-04 BOSCH

ROS2 Tracing
Aside: Dynamic tracing

» Dynamic tracing: Run-time defined tracepoints, configured by analyst
» Pro: Can be attached to any of the event sources with relatively little effort
» Con: For uprobes, need to know the symbol you're attaching to - requires in-depth knowledge of code
» Con: Currently only supported by kernel-based tracers - context-switching overhead

» Hint: You can often use dynamic tracing for your own code to add some extra info

Internal | CR/AEX3 | 2019-12-04 BOSCH

ROS2 Tracing
Installation

» This is an excerpt from hitps://micro-ros.github.io/docs/tutorials/advanced/tracing/

sudo apt-add-repository ppa:lttng/stable-2.18
L. sudo apt-get update
> Pre-ReC]UISItES sudo apt-get install lttng-tools lttng-modules-dkms liblttng-ust-dev

» Linux-Trace-Toolkit ng

wget https://gitlab.com/micro-R0OS/ros_tracing/ros2_tracing/raw/master/tracing.repos

» Babeltrace vcs import src < tracing.repos

colcon build --symlink-install --cmake-args " -DWITH_LTTNG=ON"
source ./install/local_setup.bash

» We have a repo-list for use with vcs
» Main thing: Build with —-DWITH_LTTNG=ON!
» By the magic of dynamic linking, now you can trace every ROS 2 application ;-)

12 Internal | CR/AEX3 | 2019-12-04

BOSCH

https://micro-ros.github.io/docs/tutorials/advanced/tracing/

ROS2 Tracing
Tracing your system

» Option 1: ,ros2 trace”

from launch import LaunchDescription

from launch ros.actions import Node

» Option 2: ,Trace” action in launch file

Ifrom tracetools launch.action import Tracel

def égzerate_launch_description(}:

return LaunchDescription([

Trace(
session_name='my-tracing-session’,

)>

Node(
package='tracetools test’,
node_executable='test ping’,
output="screen’,

)>

Node(
package='tracetools test’,
node_executable='test pong’,
output="screen’,

)>

D

13 Internal | CR/AEX3 | 2019-12-04

BOSCH

ROS2 Tracing
Analyzing the trace part 1: CLI

Lui3sil@RNGX7819:~/src/tracing_ws$S ros2 run tracetools_analysis cb_durations ~/.ros/tracing/my-tracing-sessionfconverted

Count Sum Mean S5td VEWTS
17 1.731224 .101837 .039629 PongMode::?(std _msgs::5tring)
17 1.0893302 .064312 .033667 PingMode::?(std _msgs::5tring)
17 0.882704 .051924 .007078 PingNode::?()
57 0.143689 .0p2521 .004859 TimeSource::?(rcl_interfaces::ParameterEvent)
58 0.134670 .0p2322 .002937 TimeSource::?(rcl_interfaces::ParameterEvent)

Internal | CR/AEX3 | 2019-12-04 BOSCH

ROS2 Tracing
Analyzing the trace part 2. Jupyter Notebook

Callback durations

0.25
0.2]
-
%]
-.E_.- 0.15
=
=
=
E 0.1 5
=
=1 _____,_.-""‘-h..____‘-ﬁ-
005 3 - ——— -
0 L L —
— T T T T } T T T T } T T T T } T T T T }
36s 38s 40s 425 445

start (2019-12-04 14.23)

— PingMNode::?()
TimeSource::?(rcl interfaces::ParameterEvent)
—— TimeSource::?(rcl interfaces::ParameterEvent)
PongMNode::?(std msgs::5iring)
— PingMNode::?({std msgs:Siring)

15 Internal | CR/AEX3 | 2019-12-04

BOSCH

ROS2 Tracing
Custom traces: Function instrumentation

» Sometimes, a more detailed view is heeded - custom tracepoints

» A simple approach is function-instrumentation with —finstrument-functions
» By default, this has too much overhead
» The “instrument-attribute-gcc-plugin” by Christophe Bourque Bedard addresses this

> Usage void attribute ((instrument function)}) instrumented function()
{

printf("this is instrumented\n");

» Add instrumentation attribute
» Compile with -fplugin=./instrument_attribute.so 1

» This is essentially a selective form of profiling

Internal | CR/AEX3 | 2019-12-04 BOSCH

ROS2 Tracing
Custom Trace Example: Executor profiling

» This summer, several people noticed that the ROS 2 SingleThreadedExecutor can have significant
CPU overhead. See https://discourse.ros.org/t/singlethreadedexecutor-creates-a-high-cpu-overhead-in-ros-2/10077/10

» We traced this using custom tracepoints in the executor
» Result:

Total duration comparison (wrt whole thread & wait_for_work() function)

. collect_entities() wrt thread ON CPL: 5.46 %
collect_entities() wrt function ON CPU: 36.00 %

. add_handles_to_wait_set() wrt thread OM CPU: 2.43 %
thread add_handles_to_wait_set{) wrt function ON CPU: 15.98 %
. rel_wait() wrt thread ON CPU: 4.84 %

red_wait() wrt function ON CPU: 31.90 %

. remove_mull_handles() wrt thread ON CPU; 2.01 %
remove_mull_handles{) wrt function ON CPU: 13.24 %%

compared to

function -

t T T T T t T T T T t T T T T t T T T T t T T T T t
0 20 40 G0 a0 100

proportion (%)

17 Internal | CR/AEX3 | 2019-12-04

BOSCH

https://discourse.ros.org/t/singlethreadedexecutor-creates-a-high-cpu-overhead-in-ros-2/10077/10

ROS2 Tracing
Outlook

» Tracepoints for services etc.

» More analyses provided out-of-the-box
» Performance improvement for analysis
» Live tracing

» Capturing data from ebpf-tracing

Internal | CR/AEX3 | 2019-12-04 BoscH
BEEEEE D 7

ROS2 Tracing
Conclusion

» Tracing is an excellent infrastructure for system-level analysis
» Both for kernel and user-space
» Bosch has contributed initial tracing support for ROS 2
» Tracepoints in framework
» Integration with tooling
» Basic analysis scripts

» We have many interesting internship / thesis projects in this area

Internal | CR/AEX3 | 2019-12-04 BOSCH

