
Software componentization
for robotics

Mixing middleware, architectures, and several robot
types

Giorgio Metta
Scientific Director

Italian Institute of Technology

L. Natale, D. Pucci,
U. Pattacini

Italian Institute of Technology

== Slide 3 ==

The sad fate of most robot software

oWriting software is difficult and time consuming

oOur software tends to die with our projects/students

oSad! Software collaboration speeds things up

oCode sharing could promote successful components

== Slide 4 ==

Software

Red
Robot
Project

Robby
Robot
Project

OpenCV

OpenGL

Barriers to software collaboration

oGroups developing on different robots face obstacles

oDifferences in sensors, actuators, bodies...

oDifferences in processors, operating systems, libraries, frameworks,

languages, compilers...

oLack of reward for producing reusable code

oResearch groups that all use a specific robot (Khepera, Pioneer,

AIBO, ...) often form a natural software community

oBut each alone is a small subset of robotics

== Slide 5 ==

The popular

robots in year

2001

Yet Another Robot Platform

oYARP is an open-source (BSD) middleware
for humanoid robotics

oHistory

o An MIT / Univ. of Genoa collaboration

o Born on Kismet, grew on COG, under QNX

o With a major overhaul, now used by
RobotCub consortium

oExists as an independent open source project (GitHub)

oC++ source code (mostly)

2000-2001

2001-2002

2003

2004-Today

== Slide 6 ==

philosophy

oOne processor is never enough

oModularity

oMinimal interference

oStopping (the robot) hurts

oHumble approach (thin middleware)

oExploit diversity

== Slide 7 ==Fitzpatrick, Metta, Natale. Towards Long-lived Robot Genes. Robotics and Autonomous Systems,

56(1):29-45, 2008

Exploit diversity: portability

oOperating system portability:
o Adaptive Communication Environment , C++ OS wrapper: e.g. threads,

semaphores, sockets

oDevelopment environment portability:
o CMake

oLanguage portability:
o Via Swig: Java (Matlab), Perl, Python, C#

C/C++
library

C/C++
library

C/C++
library

C/C++
library

Project
description

(.txt)

LINUX:
Makefiles,
Kdevelop
files, ...

WINDOWS:
MSVC files,
Borland files,

...

OSX:
Makefiles,

Xcode files,
...

== Slide 8 ==

http://www.cs.wustl.edu/~schmidt/gifs/F-15_three_shipper.jpg

Achieving modularity

oFactor out details of data flow between programs from program source

code

o Data flow is very specific to robot platform, experimental setup, network layout,

communication protocol, etc.

o Useful to keep “algorithm” and “plumbing” separate

oFactor out details of devices used by programs from program source

code

o The devices can then be replaced over time by comparable alternatives while code

can be used in other systems

oThe pattern: publisher-subscriber == Slide 9 ==

channel prioritization

Paikan, A., et al., A Best-Effort Approach for Run-Time Channel Prioritization in Real-Time Robotic Application, IROS 2015

Paikan, A., et al. Data Flow Port's Monitoring and Arbitration, Journal of Software Engineering for Robotics, 2014 == Slide 11 ==

carrier plug-ins

Camera.msg

Camera

/camera
receiver

Y
A

R
P

receiver

Y
A

R
P

yarp connect /camera /receiver

yarp connect /65.52.88.202:5159 /receiver mjpeg

receiver

Y
A

R
P

yarp connect /image@/camera /receiver

MJPG camera

http://65.52.88.202:5159

ROS

Node: /camera

Topic: /image

== Slide 12 ==

custom, efficient, protocols

== Slide 13 ==

Port Monitor

The Port Monitor is a plug-in that can be loaded by

any connection point

It has access to in-coming and out-going data, usage:

• Add compression/de-compression algorithms

• Log (e.g. compute statistics or performance

indicators)

• Sniff data, also bi-directional

Avoid explicit man-in-the-middle components

if (C1.certainty > 0.9)

accept(C1)

C1=filter(C1)

log(C1)

C1=compress(c1)

If (C1)

T1=getTime()

filtering

monitoring delays, QoS

logging

compression

== Slide 14 ==

device modularity

Yarp Device:

• A plugin which exposes the functionalities of

a hardware device through a standardized

Yarp C++ Interface.

Yarp NWS:

• A Network Wrapper Server (NWS) is a

software component (plugin) attached to a

physical device. It does not contain any

logic. It just exposes the interface to the

network.

Yarp NWC:

• A Network Wrapper Client (NWC) is a

software component which implements the

same interface of a real device, but instead

of being connected to a physical hardware,

it communicates with a Yarp NWS. == Slide 15 ==

Yarp NWS

yarpRobotInterface

Yarp Device

user module

Interface

Yarp NWC

Interface

User code

Network

NWS/NWC

• The code is well separated, and the

functionality of each component is

clear.

• Easy to maintain.

• Easy to extend.

• NWS can be used to make Yarp to

communicate with different

middlewares (which use different

network/serialization protocols)

• Yarp (yarp ports protocol)

• ROS noetic (ros topics)

• ROS2 humble (ros2 topics with

DDS)

• IsaacSDK Nvidia

• Multiple NWSs can be used

simultaneously to expose the same

plugin to multiple middlewares.

NWS/NWC ARCHITECTURE

Network

NWS YARP

• Streaming port

• RPC port

ROS Node

Yarp Module

yarpRobotInterface

NWS ROS

• ROS publisher

ROS2 Node• ROS2 publisher

NWS ROS2

In
te

rfa
c
e

Y
a

rp
 D

e
v
ic

e

Yarp ports

ROS topic

ROS2 topic

(DDS)

== Slide 16 ==

Due to a human programming error, the robot fell when transitioning from the driving task to the egress task

(the foot throttle controller wasn’t turned off). This caused the robot to the fall and faceplant out of the car

onto the asphalt.Source: http://drc.mit.edu/

Orchestration of behaviors: the problem

== Slide 17 ==

scania.com

bosch.com

toyota.com

Rethink’s Robots Get Massive Software Upgrade,

Rodney Brooks “So Excited” (IEEE Spectrum)

bostondynamics.com

Slide credits: Michele Colledanchise
== Slide 18 ==

Slide credits: Michele Colledanchise

State charts vs. behavior trees (BT)

== Slide 19 ==

Behavior trees: a primer

→

Condition Action

Do1 Do2

?

Do

⇉

Do Do

Sequence Fallback Parallel

Condition Action

If fails

== Slide 20 ==

Reactive behaviors: a simple example

Slide credits: Michele Colledanchise
== Slide 21 ==

Colledanchise, et al., Formalizing the Execution Context of Behavior Trees for Runtime Verification of Deliberative Policies,

IROS 2021

Colledanchise and Natale, On the Implementation of Behavior Trees in Robotics, IEEE Robotics and Automation Letters,

2021

== Slide 22 ==== Slide 22 ==

Semantics of BT + Skills + Components

• Communication follows the Query Pattern

• Interfaces are specified using an interface definition

language

• BT, skills and components modelled as communicating

transition systems - asynchronous execution (threads)

• Properties specified with SCOPE language (OTHELLO

subset)

Part of behavior tree

== Slide 23 ==

H
ig

h
 l
e
v
e

l
ta

s
k

(e
.g

.
p
ic

k
-a

n
d

-p
la

c
e

)
R

o
b
o

t
S

k
ill

s

(e
.g

.
g
ra

s
p
)

R
o
b
o

t
In

te
rf

a
c
e

(e
.g

.
c
lo

s
e

 g
ri

p
p
e

rs
) Error

Expected behavior

Runtime Monitor • “Sniff” the messages

passed across layers.

• Intercept message by a

runtime monitor

• A runtime monitor

detects differences

between the expected

behaviors and the

actual one

== Slide 24 ==

A robotic museum guide

What’s needed:

o Dialog management

o Human-detection

o Self-localization

o Navigation

Cloud connectivity:

o Through 5G

How long:

o 200 meters, 20+ minutes (70 with

questions)

o 110+ tours in two weeks
== Slide 25 ==

Hardware architecture

== Slide 26 ==

== Slide 27 ==

Software “tricks”

oPort monitors to implement data
compression: images and LIDAR
over 5G

oBehavior trees to implement the
behavior coordination as shown
earlier

oMultiple middleware systems: ROS
for navigation, YARP to control the
robot, Google APIs for speech, etc.

oFlexible plug-ins and remotization to
handle distributed processing with
controlled latency

G
a

lle
ri

a
 A

rt
e

M
o

d
e

rn
a

,
T
u

ri
n

P
a

la
z
z
o

 M
a

d
a

m
a

,
T
u

ri
n

== Slide 28 ==

Below

== Slide 29 ==

MBSE = MBD + System Engineering

Model-Based System Engineering
(MBSE)

• Complex Systems

• Hierarchal components

• Functional, logical, physical
decompositions

• Catch errors early, minimize rework

• Standardization

• Data dictionaries for I/F’s

• Ports and connections

• Design Optimization

• Static analysis

• Effective Communication

• Implementable descriptions

• Requirements
== Slide 30 ==

Code

Component 1 Specs … Component N Specs

System Specs

Architectural Model

RTOS

Code

System

Integration

From CAD design to realistic simulations
Simulink/Simscape

Transmission

Tendons circuit

Assemblies
CAD (Creo)

Simulink

Simscape

Multibody

Link

*.step

*.xml

== Slide 31 ==

ami-iit/jaxsim

== Slide 32 ==

JAXsim
A scalable physics engine for robot learning
implemented in pure Python with JAX.

Diego Ferigo, Silvio Traversaro, Daniele Pucci

https://github.com/ami-iit/jaxsim

Above

== Slide 34 ==

Collaborative software & the robot apps

Docker Swarm

Docker

Docker Compose

== Slide 35 ==

Community hub

== Slide 36 ==

GitHub Registry / Docker hub

…

Docker Swarm
Web App containing

available apps list

Development steps

== Slide 37 ==

GitHub

robotology/robotology-

superbuild

push

Self Hosted

Building
GPU + GUI + other

trigger processe

s

check

Docker Login
GitHub Action

docker-swarm-deployer

docker-compose-actions

GitHub Action

GitHub

icub-tech /

code

icub-tech /

appsAway

Automatic building & testing

== Slide 38 ==

giorgio.metta@iit.it

