TOWARDS INDUSTRIAL-GRADE ROBOT CONTROL IN ROS

Anders Billesø Beck Head of Innovation

THE NEED FOR A NEW ROS DRIVER

Clouded landscape

- More than 200 variants of a ROS driver for UR robots exist.
- Instability towards API changes

A lot could be improved

- Many, especially new features are lacking
- Sub-optimal performance
- Only preliminary e-Series support

The new driver

ROSIN FTP in collaboration with FZI

GOALS

Ease of use

Easy and plug-and-play to use a UR robot with ROS

Performance

- Full utilization of all features of the robots
- As industrial grade an interface as current ROS practice allows

Stability

- The driver will build on stable and versioned APIs
- The driver will be integrated into the software testing regime of Universal Robots

Community

• The driver will remain open source and relying on future community contributions

OFFICIAL UNIVERSAL ROBOTS ROS DRIVER

Beta Program Launch - June 1st 2019

73 beta partners from 12 countries

- 13 from Large entreprises
- 16 from SMEs and startups
- 12 from Research organizations
- 14 from Universities

Public Launch – October 9th 2019

Hosted at Universal Robots GitHub - 25 daily unique clones!

HIGHLIGHTS

- Stable control interfaces
- Teach-pendant integration
 - Use ROS as part of a program
 - Pause, stop, restart and scale speed
- Factory Calibration in ROS
- Safety compliance speed scaling
- eSeries tool communication forwarding
- Full safety system compliance

CALIBRATION FOR ABSOLUTE ACCURACY

- All UR robots are individually factory calibrated for absolute accuracy
- Factory calibration not directly applicable for ROS
- Change structure to match URDF

CALIBRATION CORRECTION

- Transform DH parameters to 6D representation
- Move in arm segments on their rotation axis
- Save resulting 6D parameters of each joint as .yaml parameter set
- Automatically happening at start
- Parameter sets are saved in \$ROS_HOME
- Launch files provide a *serial_number* argument to load correct calibration

THE PROBLEM

WITH SAFETY COMPLIANCE CONTROLLER

e-Series TOOL COMMUNICATION IN ROS

Tool communication connector

• RS485 Software UART, up to 5 Mbps

UART in ROS

WHAT'S NEXT?

TOWARDS INDUSTRIAL-GRADE

Industrial-grade performance and stability require an interface that respect real-time constraints and leverage the full performance of all components.

- Easy access to all control interfaces in ROS
- Exploit the full motion quality and responsiveness of the robot
- Industrial stability and robustness
- Integrated and seamless cooperation between ROS and Robot
- Making the way for using ROS for actual production and technology commercialization

GOALS

• Easy-to-use cartesian motion interface in ROS

- Definition of Cartesian input for robot control (Try to set a standard)
- New hardware interfaces for Cartesian commands.

Seamless switching of execution flow between ROS and robot

- On the robot execution of movements and functions in real-time
- A Further enhanced coupling of ROS Control and the UR Controller
- Real-time use of new robot features

ROS as a Service

- Two-way communication channel between ROS and Robot controller
- User-defined ROS actions and services can be called from a UR program tree lowering the barriers of utilizing ROS-I inside an industrial automation process

PERFORMANCE ACROSS REAL-TIME BARRIERS

- Ensuring hard real-time desicions in the robot controller
- Enabling seemless transition to soft real-time ROS control when needed for advanced tasks

REACTIVE MOTION PROGRAMMING (NEW 5.3-5.4)

Fully reactive and event driven motions

Movement and actions until events

- Contact detection
 - Disturbance tolerant
 - Detects hard and relatively soft contacts
 - Retaction to contact surfaces

• Utilize 2 ms hard real-time responses

DYNAMIC PATH-OFFSET (NEW 5.6 – 5 DAYS AGO)

- Dynamic path-offset allows real-time adjustment to robot motions in 6DOF
- Motions can be compensated relative to
 - Tool of the robot
 - e.g. weaving for welding, admittance control
 - Base of the robot
 - E.g. Use with mobile robots or linear axis

CALL TO ACTION

UNIVERSAL ROBOTS ROS DRIVER

Leverage your UR robots by using the new driver, and give us your feedback

https://github.com/UniversalRobots/Universal Robots ROS Driver

PROVIDE YOUR INPUT FOR THE 2.0 DRIVER

Contact us on ros@universal-robots.com for feedback and ideas

DON'T FORGET TO TRY THE NEW DRIVER

