A Python library for scripting and rapid-
prototyping of Gazebo simulations

Musa Morena Marcusso Manhaes

Bosch Corporate Research — Renningen, Germany
Robotics Systems Department (CR/AER)

7th ROS-Industrial Conference - Stuttgart, Germany

INTRODUCTION

Introduction
The ideal process for the development of a Gazebo simulation

Geometries e » Model assets
Meshes .
. . . World layout
Kinematics : Physics engine configuration
Parameters : y g g
SDF / URDF : SDF
Gazebo model : Gazebo world
: N Y

BOSCH

3 CR/AER2 - Musa Marcusso | 11.12.2019 - 7th ROS-Industrial Conference - Stuttgart, Germany

Introduction
The actual process for the development of a Gazebo simulation

Finding the correct

ixi i hysics engine
Fixing materials for pnys . |
e Models g 0 DI

visualization
Geometries piEEEEEEE NN lllllllllll’MOdeI assets :’ Placement Of i
Meshes . World layout i models without !
Instability due to Kinematics : Physics engine configuration - explicit
wrong physics Parameters y g g measurements on |
parameters ! the GUI i
Instability due to big i Tuning of !
differences in SDF / URDF SDF pgrameters fqr i
moments of inertia : different physics :
for connected links . , engines :
Multiple iterations Gazebo model : Gazebo world
testing the model in .
Gazebo for errors N J
in poses, meshes, :
physics ---'
parameters, scaling
4 CR/AER2 - Musa Marcusso | 11.12.2019 - 7th ROS-Industrial Conference - Stuttgart, Germany BOSCH

Introduction
Application-dependent difficulties

» Generation variations of worlds and models (e.g. object placement, model geometry, physics engine
configuration)

» Scripting of world layouts and event-based actions

» SDF allows more control of the model and its parametrization regarding physics, but most of robot
descriptions are written in URDF and don’t use SDF to its full potential

» The differences between SDF and URDF morphology

@) O O
URDF

CR/AER2 - Musa Marcusso | 11.12.2019 - 7th ROS-Industrial Conference - Stuttgart, Germany BOSCH

Introduction
Approach: Procedural Generation

» Technique from gaming development
» Rapid-prototyping of simulation scenarios
» Abstractions to simulation entities

» Allow scripting of Gazebo simulations (generation of models, setting/accessing parameters in
runtime, interacting with simulation via script)

» Extend templating options for robot descriptions

» Improve conversion between URDF and SDF formats for better use of Gazebo’s features

CR/AER2 - Musa Marcusso | 11.12.2019 - 7th ROS-Industrial Conference - Stuttgart, Germany BOSCH

f" pPcg_gazebo pkgs

1

— generators

—>» model factory

— model group generator
—» world generator

—» assets_manager

—>» engines_manager

—>» constraints manager

— simulation
(=)
51|

—» physics

— models

—— links

— Jjoints

——» sensors

L » 1lights

— properties

CR/AER2 - Musa Marcusso | 11.12.2019 - 7th ROS-Industrial Conference - Stuttgart, Germany

— @ parsers
[

> importer/exporter
—» sdf

——» urdf

— sdf config

> template processors
— jinja

——» xacro

» converters

— sdf2urdf

——» urdf2sdf

task manager
w

gazebo proxy
process_manager
stages

tasks

[1] Source: https://www.iconfinder.com/iconsets/brainy-mixed

License: https://creativecommons.org/licenses/by/3.0/

BOSCH

https://www.iconfinder.com/iconsets/brainy-mixed
https://creativecommons.org/licenses/by/3.0/

FEATURES

JupyterLab - Mozilla Firefox
— JupyterLab X
<€)> C @ © @ localhost
File Edit View Run Kemel Tabs Settings Help

B A 02 - Inspection of Gazebon @
B+ XDO 0O » m C Markdown ~ Python3 O

o
| Inspection of Gazebo models

List all Gazebo models

The library loads all Gazebo models In the

e catkin workspace
® $HOME/.gazebo/models
® /usr/share/gazebo-$GAZEBO VERSION/models

import warnings
warnings.filterwarnings('ignore')

from pcg _gazebo.simulation import get gazebo model names
print(‘List of models:')

for tag in get gazebo model names():
print('\t - {}'.format(tag))

Loading Gazebo models already in the database
Using the tag for the Gazebo model, the SDF file can be loaded as a SimulationObject .

from pcg gazebo.simulation import SimulationModel

model = SimulationModel.from gazebo model('gsa sofa manduris®)

Visualize the visual and collision geometries of the model using pyglet .

model.show(mesh type='collision')
List all static Gazebo models found on the resources path model . show(mesh type='visual®)

Load the Gazebo model using its tag name
Inspect the SDF elements

Visualize visual and collision geometries
Load another Gazebo model and inspect the SDF elements directly.

Access and edit SDF parameters without editing the file

0 [6 & Python3|Idle Mode: Command @ Ln1,Col1 02- Inspection of Gazebo models.ipynb

Open Gazebo inside the notebook

Create box model and spawn it in Gazebo with 5 different
friction coefficients

Apply force to each box

_ JupyterLab

X

< => C o © @ localhost

File Edit

View Run Kemel Tabs Settings Help

" 02 - Inspection of Gazebon ® % 03 - Creating models with

+

6 &

X

O M » m C Markdown ~ Python 3

Creating models with Jupyter notebooks {

Testing friction properties
The pcg_gazebo pkgs Includes also a simple Interface to start Gazebo

It can be used to start Gazebo In the Python script or notebook, spawn models and interact with the simulation

from pcg gazebo.t
server = Server()

rea 3 nulation

1t/ L fault parameter
simulation.create gazebo empty world task()

A task named / {

the aagded

rint('Tasks created: ', simulation.get task list())
N Iy till not ni
print('Is Gazebo running: {}'.format(
simulation.is task running('gazebo')))

sazebo

simulation.run all tasks()

Once the simulation Is running, an Instance of the GazeboProxy object can be created to Interact with it (e.g. spawn
models). If not specified otherwise, the simulation is created with a random port for Gazebo and ROS master to enable
multiple Instances of the simulation to run in parallel.

from pcg _gazebo.generators import WorldGenerator
import random

4 reat 3 (ebo prox

gazebo proxy = simulation.get gazebo proxy()
print('ROS configuration

print(gazebo proxy.ros

Python 3 | idle Mode: Command @ Ln1,Colt 03- Creating models with Jupyter notebooks.ipynb

JupyterLab - Mozilla Firefox

— oar 1A W G — JupyterLab

Norld L, eyt A3 ;'|| |- € ' |'f9f' ®: ';/l |l= () (€)> C @ localhost: lab

File Edit View Run Kemel Tabs Settings Help

. -
ﬂ /% 02 - Inspection of Gazebom X | (% 03 - Creating models with Jt @

|.B+}(@Dblccode v Python3 O
|

ine for 1 in range(len(mu)):
gazebo proxy.apply body wrench(
model name='box mu {}'.format(mu(i]),
link_name="link',
force=[300, 0, 0],
1.0 torque=[0, 0, 0],
start _time=0,
duration=2

g ‘)

Property Value P Create a mobile base
Recreating the Gazebo tutorial for a mobile base
from pcg _gazebo.simulation import create object

Creating the main body of the chassis
chassis = create object('box')
chassis.size = [2, 1, 0.3] i
chassis.add inertial(2e)
chassis.visual.enable property('material’)
chassis.visual.set xkcd color()

print(chassis.to sdf('link'))

Creating the caster wheel

caster wheel = create object('sphere')

caster wheel.radius = 0.125

caster wheel.add inertial(1)

caster wheel.visual.enable property('material’')
caster wheel.visual.set xkcd color()

. Create model with chassis, 2 wheels, caster wheel with # Setting friction parameters to zero

friction set to zero caster wheel.collision.enable property('friction')
caster wheel.collision.set ode friction params(
mu=0.0,
mu2=0.0,
. . slipl=0,
* Modify the model by adding IMU, contact and camera slip2=0,

sensors) fdirl=[e, 0, @]

e Spawnit

* Spawn modified model

caster wheel.collision.set bullet friction params(
Il Real Time Factor m Time Real Time friction=0.0,
« Export generated model as Gazebo model | frictio

0 B 6 & Python3|lidle Mode: Command @ Ln1,Col1 03 - Creating models with Jupyter notebooks.ipynb

JupyterLab - Mozilla Firefox

_ JupyterLab
« =2 C o © @ localhost

File Edit View Run Kemel Tabs Settings Help

® 04 - Model factory.lpynb X

B+ X0ODN0D » m ¢ Markdown v Python 3

Model factory

Single-link models can be easily generated using a few parameters.

from pcg gazebo.generators.creators import create models from config
from pcg _gazebo.task manager import Server

tart an empty world Gazet simulatl
server = Server()
server.create simulation('default')
simulation = server.get simulation(
simulation.create gazebo empty world task()
print(simulation.get task list())
p t('Is Gazebo running: {}'.format(
simulation.is task running('gazebo')))
simulation.run all tasks()

Create a (el)roX

gazebo proxy = simulation.get gazebo proxy()
import random

def create and spawn(config, pos=None):
models = create models from config(config)
for model in models:
model. spawn(
gazebo proxy=gazebo proxy,
robot namespace=model.name,
pos=pos if pos is not None else |
* random.random() - 10,
20 * random.random() -
2 * random. random()
1

Extruded models

from pcg gazebo.generators.shapes import random rectangle, \
random_points to_triangulation, random rectangles

Use model factory to create single-link models (box, sphere,
cylinder, from mesh, from extruded polygon)

config = [

Use lambda functions to dynamically generate the faget

type='extrude',

parameters args=dict (

0 [6 & Python3|ide Mode: Command @ Ln1,Col1 04 - Model factory.ipy

JupyterLab - Mozilla Firefox

_ JupyterLab X
e R © @ localhost

File Edit View Run Kemel Tabs Settings Help

=] # 06 - Robot description.ipynt @

B + XTO M » m C Markdown ~ Python3 O

O
Parsing and generating¥obot descriptions from
templates

Parsing XACRO files
.xacro can also be parsed and inspected using the pcg gazebo pkgs library

import warnings
warnings.filterwarnings('ignore')

from pcg_gazebo.simulation import SimulationModel
from pcg gazebo.parsers import parse xacro

import os

import rospkg
urdf filename = os.path.join(rospkg.RosPack().get path('ur description’), 'urdf', 'ur5_robot.urdf.

Load the URDF model as a SimulationModel .

model = SimulationModel.from urdf(parse xacro{urdf filename))
print(‘Links: ', model.link names)

print(‘Joints: ', model.joint names)

model .show(mesh_type='collision')

model.show(mesh_type='

Parsing Jinja templates to generate SDF robot descriptions

Load xacro files and its generated URDF model Jinja is a powerful templating engine for Python. It can be extended with new functions and offers data structures such as
dictionaries to be used inside the template

Parse Jinja templates with pcg extensions for generation of
model and WOI’|d configurations In this example, the kobuki model was rewritten as a Jinja template (see below) to generate an SDF model for the robot

Call ROS processes from the notebook to interact Wlth the The extensions for the Jinja engines In the pcg gazebo pkgs Include

robot

0 6 & Python 3| Idie Mode: Command @ Ln1,Col1 06 - Robot description.ipynb

Features
World generation

Collision geometries

| LN IES @ alk0

@O B|%Z |0 a0

14 CR/AER2 - Musa Marcusso | 11.12.2019 - 7th ROS-Industrial Conference - Stuttgart, Germany
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Features
Pose randomization

4
Dining room

/ > Kitchen

Living room

15 CR/AER2 - Musa Marcusso | 11.12.2019 - 7th ROS-Industrial Conference - Stuttgart, Germany @ BOSCH
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Features

16 CR/AER2 - Musa Marcusso | 11.12.2019 - 7th ROS-Industrial Conference - Stuttgart, Germany

[\

CONCLUSION

Conclusion

» pcg _gazebo_ pkgs can be used for testing simulation scenarios without editing XML files
» Scripting can be used to generate assets and interact with the simulation

» Dynamic model and world generation allows generation of large number of assets with small effort
for testing robotics systems solutions in various contexts

» Python libraries can be used on the simulation building process, along with Jupyter notebooks
» Model editing and inspection
» sdf2urdf and urdf2sdf give more possibilities of ways to represent the robot description

» Package available at https://github.com/boschresearch/pcg gazebo pkgs under
Apache-2.0 license

CR/AER2 - Musa Marcusso | 11.12.2019 - 7th ROS-Industrial Conference - Stuttgart, Germany

BOSCH

https://github.com/boschresearch/pcg_gazebo_pkgs

THANK YOU

Musa Morena Marcusso Manhaes (

BOSCH

mailto:musa.marcusso@de.bosch.com
https://github.com/boschresearch/pcg_gazebo_pkgs

