
Henrik Larsen
IT University of Copenhagen

Andrzej Wąsowski
IT University of Copenhagen

@AndrzejWasowski

[Reactive]
Programming
with [Rx]ROS

c© Andrzej Wąsowski, IT University of Copenhagen 1

The Listener Example
void chatterCallback(const std_msgs::String::ConstPtr& msg)
{ ROS_INFO("I heard: [%s]", msg->data.c_str()); }

int main(int argc, char **argv) {
ros::init(argc, argv, "listener");
ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("chatter", 1000, chatterCallback);
ros::spin();
return 0;

}

c© Andrzej Wąsowski, IT University of Copenhagen 2

The Listener Example
void chatterCallback(const std_msgs::String::ConstPtr& msg)
{ ROS_INFO("I heard: [%s]", msg->data.c_str()); }

int main(int argc, char **argv) {
ros::init(argc, argv, "listener");
ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("chatter", 1000, chatterCallback);
ros::spin();
return 0;

}

/chatter

c© Andrzej Wąsowski, IT University of Copenhagen 2

The Listener Example
void chatterCallback(const std_msgs::String::ConstPtr& msg)
{ ROS_INFO("I heard: [%s]", msg->data.c_str()); }

int main(int argc, char **argv) {
ros::init(argc, argv, "listener");
ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("chatter", 1000, chatterCallback);
ros::spin();
return 0;

}

/chatter

chatter
subscribe

c© Andrzej Wąsowski, IT University of Copenhagen 2

The Listener Example
void chatterCallback(const std_msgs::String::ConstPtr& msg)
{ ROS_INFO("I heard: [%s]", msg->data.c_str()); }

int main(int argc, char **argv) {
ros::init(argc, argv, "listener");
ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("chatter", 1000, chatterCallback);
ros::spin();
return 0;

}

/chatter

chatter
subscribe

consumer
callback

<std_msgs::String>

c© Andrzej Wąsowski, IT University of Copenhagen 2

The Listener Example
void chatterCallback(const std_msgs::String::ConstPtr& msg)
{ ROS_INFO("I heard: [%s]", msg->data.c_str()); }

int main(int argc, char **argv) {
ros::init(argc, argv, "listener");
ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("chatter", 1000, chatterCallback);
ros::spin();
return 0;

}

/chatter

chatter
subscribe

consumer
callback

<std_msgs::String>
int main(int argc, char **argv) {
rxros::init(argc, argv, "listener");
rxros::observable::from_topic<std_msgs::String>("/chatter", 1000)

.subscribe ([] (const std_msgs::String& msg)
{

ROS_INFO_STREAM ("I heard: [" << msg.data << "]");
});

rxros::spin();
return 0;

}

c© Andrzej Wąsowski, IT University of Copenhagen 2

The Listener Example
Key points

Problem

We have a simple mental model in ROS: a flow graph of messages
We think about callbacks when we realize it
Among the most complex control-flow constructs

Solution

Reactive programming gives simple control-flow
Flow of information is explicit in the code

c© Andrzej Wąsowski, IT University of Copenhagen 3

The Listener Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages

We think about callbacks when we realize it
Among the most complex control-flow constructs

Solution

Reactive programming gives simple control-flow
Flow of information is explicit in the code

c© Andrzej Wąsowski, IT University of Copenhagen 3

The Listener Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about callbacks when we realize it

Among the most complex control-flow constructs

Solution

Reactive programming gives simple control-flow
Flow of information is explicit in the code

c© Andrzej Wąsowski, IT University of Copenhagen 3

The Listener Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about callbacks when we realize it
Among the most complex control-flow constructs

Solution

Reactive programming gives simple control-flow
Flow of information is explicit in the code

c© Andrzej Wąsowski, IT University of Copenhagen 3

The Listener Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about callbacks when we realize it
Among the most complex control-flow constructs

Solution

Reactive programming gives simple control-flow
Flow of information is explicit in the code

c© Andrzej Wąsowski, IT University of Copenhagen 3

The Listener Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about callbacks when we realize it
Among the most complex control-flow constructs

Solution
Reactive programming gives simple control-flow

Flow of information is explicit in the code

c© Andrzej Wąsowski, IT University of Copenhagen 3

The Listener Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about callbacks when we realize it
Among the most complex control-flow constructs

Solution
Reactive programming gives simple control-flow
Flow of information is explicit in the code

c© Andrzej Wąsowski, IT University of Copenhagen 3

The Talker Example
int main(int argc, char **argv)
{

ros::init(argc, argv, "talker");
ros::NodeHandle n;
ros::Publisher chatter_pub =

n.advertise<std_msgs::String>("chatter",10);
ros::Rate loop_rate(10);
int count = 0;
while (ros::ok())
{

std_msgs::String msg;
std::stringstream ss;
ss << "hello world " << count;
msg.data = ss.str();
ROS_INFO("%s", msg.data.c_str());
chatter_pub.publish(msg);
ros::spinOnce();
loop_rate.sleep();
++count;

}
return 0;

}
c© Andrzej Wąsowski, IT University of Copenhagen 4

The Talker Example
int main(int argc, char **argv)
{

ros::init(argc, argv, "talker");
ros::NodeHandle n;
ros::Publisher chatter_pub =

n.advertise<std_msgs::String>("chatter",10);
ros::Rate loop_rate(10);
int count = 0;
while (ros::ok())
{

std_msgs::String msg;
std::stringstream ss;
ss << "hello world " << count;
msg.data = ss.str();
ROS_INFO("%s", msg.data.c_str());
chatter_pub.publish(msg);
ros::spinOnce();
loop_rate.sleep();
++count;

}
return 0;

}

int main(int argc, char **argv)
{

rxros::init(argc, argv, "talker");
const std::string hello = "hello world ";

rxcpp::observable<>::
interval (std::chrono::milliseconds (10))
| map ([&](int i)

{ return mk_msg(hello + std::to_string(i)); })
| tap ([](const std_msgs::String& msg)

{ ROS_INFO_STREAM (msg.data); })
| publish_to_topic<std_msgs::String>

("/chatter", 1000);
rxros::spin();
return 0;

}
c© Andrzej Wąsowski, IT University of Copenhagen 4

The Talker Example
Key points

Problem

We have a simple mental model in ROS: a flow graph of messages
We think about loops, intervals, counters incremented when we realize it

Solution

Functional programming raises the abstraction level
We think about a incremented stream with a frequency
And we transform this stream (or messages in it)

In RxRos publisher and subscriber look similar: both are pipelines
In classic ROS they are very different: callback vs a loop
RxROS parallelizes pipeline processing
When you are avoiding callbacks, and remain pure (no side effects) as
much as possible, the need for locks decreases, and with them
concurrency problems

c© Andrzej Wąsowski, IT University of Copenhagen 5

The Talker Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages

We think about loops, intervals, counters incremented when we realize it

Solution

Functional programming raises the abstraction level
We think about a incremented stream with a frequency
And we transform this stream (or messages in it)

In RxRos publisher and subscriber look similar: both are pipelines
In classic ROS they are very different: callback vs a loop
RxROS parallelizes pipeline processing
When you are avoiding callbacks, and remain pure (no side effects) as
much as possible, the need for locks decreases, and with them
concurrency problems

c© Andrzej Wąsowski, IT University of Copenhagen 5

The Talker Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about loops, intervals, counters incremented when we realize it

Solution

Functional programming raises the abstraction level
We think about a incremented stream with a frequency
And we transform this stream (or messages in it)

In RxRos publisher and subscriber look similar: both are pipelines
In classic ROS they are very different: callback vs a loop
RxROS parallelizes pipeline processing
When you are avoiding callbacks, and remain pure (no side effects) as
much as possible, the need for locks decreases, and with them
concurrency problems

c© Andrzej Wąsowski, IT University of Copenhagen 5

The Talker Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about loops, intervals, counters incremented when we realize it

Solution

Functional programming raises the abstraction level
We think about a incremented stream with a frequency
And we transform this stream (or messages in it)

In RxRos publisher and subscriber look similar: both are pipelines
In classic ROS they are very different: callback vs a loop
RxROS parallelizes pipeline processing
When you are avoiding callbacks, and remain pure (no side effects) as
much as possible, the need for locks decreases, and with them
concurrency problems

c© Andrzej Wąsowski, IT University of Copenhagen 5

The Talker Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about loops, intervals, counters incremented when we realize it

Solution
Functional programming raises the abstraction level

We think about a incremented stream with a frequency
And we transform this stream (or messages in it)

In RxRos publisher and subscriber look similar: both are pipelines
In classic ROS they are very different: callback vs a loop
RxROS parallelizes pipeline processing
When you are avoiding callbacks, and remain pure (no side effects) as
much as possible, the need for locks decreases, and with them
concurrency problems

c© Andrzej Wąsowski, IT University of Copenhagen 5

The Talker Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about loops, intervals, counters incremented when we realize it

Solution
Functional programming raises the abstraction level
We think about a incremented stream with a frequency

And we transform this stream (or messages in it)

In RxRos publisher and subscriber look similar: both are pipelines
In classic ROS they are very different: callback vs a loop
RxROS parallelizes pipeline processing
When you are avoiding callbacks, and remain pure (no side effects) as
much as possible, the need for locks decreases, and with them
concurrency problems

c© Andrzej Wąsowski, IT University of Copenhagen 5

The Talker Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about loops, intervals, counters incremented when we realize it

Solution
Functional programming raises the abstraction level
We think about a incremented stream with a frequency
And we transform this stream (or messages in it)

In RxRos publisher and subscriber look similar: both are pipelines
In classic ROS they are very different: callback vs a loop
RxROS parallelizes pipeline processing
When you are avoiding callbacks, and remain pure (no side effects) as
much as possible, the need for locks decreases, and with them
concurrency problems

c© Andrzej Wąsowski, IT University of Copenhagen 5

The Talker Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about loops, intervals, counters incremented when we realize it

Solution
Functional programming raises the abstraction level
We think about a incremented stream with a frequency
And we transform this stream (or messages in it)

In RxRos publisher and subscriber look similar: both are pipelines

In classic ROS they are very different: callback vs a loop
RxROS parallelizes pipeline processing
When you are avoiding callbacks, and remain pure (no side effects) as
much as possible, the need for locks decreases, and with them
concurrency problems

c© Andrzej Wąsowski, IT University of Copenhagen 5

The Talker Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about loops, intervals, counters incremented when we realize it

Solution
Functional programming raises the abstraction level
We think about a incremented stream with a frequency
And we transform this stream (or messages in it)

In RxRos publisher and subscriber look similar: both are pipelines
In classic ROS they are very different: callback vs a loop

RxROS parallelizes pipeline processing
When you are avoiding callbacks, and remain pure (no side effects) as
much as possible, the need for locks decreases, and with them
concurrency problems

c© Andrzej Wąsowski, IT University of Copenhagen 5

The Talker Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about loops, intervals, counters incremented when we realize it

Solution
Functional programming raises the abstraction level
We think about a incremented stream with a frequency
And we transform this stream (or messages in it)

In RxRos publisher and subscriber look similar: both are pipelines
In classic ROS they are very different: callback vs a loop
RxROS parallelizes pipeline processing

When you are avoiding callbacks, and remain pure (no side effects) as
much as possible, the need for locks decreases, and with them
concurrency problems

c© Andrzej Wąsowski, IT University of Copenhagen 5

The Talker Example
Key points

Problem
We have a simple mental model in ROS: a flow graph of messages
We think about loops, intervals, counters incremented when we realize it

Solution
Functional programming raises the abstraction level
We think about a incremented stream with a frequency
And we transform this stream (or messages in it)

In RxRos publisher and subscriber look similar: both are pipelines
In classic ROS they are very different: callback vs a loop
RxROS parallelizes pipeline processing
When you are avoiding callbacks, and remain pure (no side effects) as
much as possible, the need for locks decreases, and with them
concurrency problems

c© Andrzej Wąsowski, IT University of Copenhagen 5

The Talker Example
Marble diagram

c© Andrzej Wąsowski, IT University of Copenhagen 6

The Talker Example
Marble diagram

c© Andrzej Wąsowski, IT University of Copenhagen 6

The Talker Example
Marble diagram

interval (std::chrono::milliseconds (10))

5 4 3 2 1

10ms

c© Andrzej Wąsowski, IT University of Copenhagen 6

The Talker Example
Marble diagram

interval (std::chrono::milliseconds (10))

5 4 3 2 1

10ms

| map ([&](int i) { return mk_msg (hello+std::to_string(i)); })

"hello world 5" "hello world 4" "hello world 3" "hello world 2" "hello world 1"

c© Andrzej Wąsowski, IT University of Copenhagen 6

The Talker Example
Marble diagram

interval (std::chrono::milliseconds (10))

5 4 3 2 1

10ms

| map ([&](int i) { return mk_msg (hello+std::to_string(i)); })

"hello world 5" "hello world 4" "hello world 3" "hello world 2" "hello world 1"

| tap ([](const std_msgs::String& msg) { ROS_INFO_STREAM (msg.data); })

ROS_INFO("hello world 5")!... ROS_INFO("hello world 3")!... ROS_INFO("hello world 1")!

c© Andrzej Wąsowski, IT University of Copenhagen 6

The Talker Example
Marble diagram

interval (std::chrono::milliseconds (10))

5 4 3 2 1

10ms

| map ([&](int i) { return mk_msg (hello+std::to_string(i)); })

"hello world 5" "hello world 4" "hello world 3" "hello world 2" "hello world 1"

| tap ([](const std_msgs::String& msg) { ROS_INFO_STREAM (msg.data); })

ROS_INFO("hello world 5")!... ROS_INFO("hello world 3")!... ROS_INFO("hello world 1")!

The stream is published (string messages) to /chatter

publish to topic /chatter

c© Andrzej Wąsowski, IT University of Copenhagen 6

RxROS
RxROS is a very thin library (326 lines of C++ header file)

Extends RxCPP, a reactive programming library for C++
Adds several ROS-specific operators: advertiseService, from_topic,
from_device, from_yaml, sample_with_frequency, publish_to_topic,
call_service
Available in melodic and kinetic: apt install ros-melodic-rxros
Available on GitHub https://github.com/rosin-project/rxros
Some examples https://github.com/rosin-project/rxros_examples

c© Andrzej Wąsowski, IT University of Copenhagen 7

https://github.com/rosin-project/rxros
https://github.com/rosin-project/rxros_examples

RxROS
RxROS is a very thin library (326 lines of C++ header file)
Extends RxCPP, a reactive programming library for C++

Adds several ROS-specific operators: advertiseService, from_topic,
from_device, from_yaml, sample_with_frequency, publish_to_topic,
call_service
Available in melodic and kinetic: apt install ros-melodic-rxros
Available on GitHub https://github.com/rosin-project/rxros
Some examples https://github.com/rosin-project/rxros_examples

c© Andrzej Wąsowski, IT University of Copenhagen 7

https://github.com/rosin-project/rxros
https://github.com/rosin-project/rxros_examples

RxROS
RxROS is a very thin library (326 lines of C++ header file)
Extends RxCPP, a reactive programming library for C++
Adds several ROS-specific operators: advertiseService, from_topic,
from_device, from_yaml, sample_with_frequency, publish_to_topic,
call_service

Available in melodic and kinetic: apt install ros-melodic-rxros
Available on GitHub https://github.com/rosin-project/rxros
Some examples https://github.com/rosin-project/rxros_examples

c© Andrzej Wąsowski, IT University of Copenhagen 7

https://github.com/rosin-project/rxros
https://github.com/rosin-project/rxros_examples

RxROS
RxROS is a very thin library (326 lines of C++ header file)
Extends RxCPP, a reactive programming library for C++
Adds several ROS-specific operators: advertiseService, from_topic,
from_device, from_yaml, sample_with_frequency, publish_to_topic,
call_service
Available in melodic and kinetic: apt install ros-melodic-rxros

Available on GitHub https://github.com/rosin-project/rxros
Some examples https://github.com/rosin-project/rxros_examples

c© Andrzej Wąsowski, IT University of Copenhagen 7

https://github.com/rosin-project/rxros
https://github.com/rosin-project/rxros_examples

RxROS
RxROS is a very thin library (326 lines of C++ header file)
Extends RxCPP, a reactive programming library for C++
Adds several ROS-specific operators: advertiseService, from_topic,
from_device, from_yaml, sample_with_frequency, publish_to_topic,
call_service
Available in melodic and kinetic: apt install ros-melodic-rxros
Available on GitHub https://github.com/rosin-project/rxros

Some examples https://github.com/rosin-project/rxros_examples

c© Andrzej Wąsowski, IT University of Copenhagen 7

https://github.com/rosin-project/rxros
https://github.com/rosin-project/rxros_examples

RxROS
RxROS is a very thin library (326 lines of C++ header file)
Extends RxCPP, a reactive programming library for C++
Adds several ROS-specific operators: advertiseService, from_topic,
from_device, from_yaml, sample_with_frequency, publish_to_topic,
call_service
Available in melodic and kinetic: apt install ros-melodic-rxros
Available on GitHub https://github.com/rosin-project/rxros
Some examples https://github.com/rosin-project/rxros_examples

c© Andrzej Wąsowski, IT University of Copenhagen 7

https://github.com/rosin-project/rxros
https://github.com/rosin-project/rxros_examples

VelocityPublisher / TeleOp

c© Andrzej Wąsowski, IT University of Copenhagen 8

VelocityPublisher / TeleOp

from
topic
/joystick

c© Andrzej Wąsowski, IT University of Copenhagen 8

VelocityPublisher / TeleOp

from
topic
/joystick

Joystick.event
map

c© Andrzej Wąsowski, IT University of Copenhagen 8

VelocityPublisher / TeleOp

from
topic
/joystick

Joystick.event
map

from
topic
/keyboard

c© Andrzej Wąsowski, IT University of Copenhagen 8

VelocityPublisher / TeleOp

from
topic
/joystick

Joystick.event
map

from
topic
/keyboard

Keyboard.event
map

c© Andrzej Wąsowski, IT University of Copenhagen 8

VelocityPublisher / TeleOp

from
topic
/joystick

Joystick.event
map

from
topic
/keyboard

Keyboard.event
map

teleop event
merge

c© Andrzej Wąsowski, IT University of Copenhagen 8

VelocityPublisher / TeleOp

from
topic
/joystick

Joystick.event
map

from
topic
/keyboard

Keyboard.event
map

teleop event
merge

integrated
velocity
changes

scan

c© Andrzej Wąsowski, IT University of Copenhagen 8

VelocityPublisher / TeleOp

from
topic
/joystick

Joystick.event
map

from
topic
/keyboard

Keyboard.event
map

teleop event
merge

integrated
velocity
changes

scan Twist
messages

map

c© Andrzej Wąsowski, IT University of Copenhagen 8

VelocityPublisher / TeleOp

from
topic
/joystick

Joystick.event
map

from
topic
/keyboard

Keyboard.event
map

teleop event
merge

integrated
velocity
changes

scan Twist
messages

map re-sample and
publish to topic
/cmd_vel

map

c© Andrzej Wąsowski, IT University of Copenhagen 8

Challenges Ahead

Copying semantics and de-allocation of objects rather complex in C++
(comparing to managed languages)

Unclear impact on performance, more threads (cost) but huge
opportunties for parallelization (gain)
Some mental cost in changing the programming paradigm, but there is no
going back :)
Understand how much of ROS-based code is feasible to write this way

c© Andrzej Wąsowski, IT University of Copenhagen 9

Challenges Ahead

Copying semantics and de-allocation of objects rather complex in C++
(comparing to managed languages)
Unclear impact on performance, more threads (cost) but huge
opportunties for parallelization (gain)

Some mental cost in changing the programming paradigm, but there is no
going back :)
Understand how much of ROS-based code is feasible to write this way

c© Andrzej Wąsowski, IT University of Copenhagen 9

Challenges Ahead

Copying semantics and de-allocation of objects rather complex in C++
(comparing to managed languages)
Unclear impact on performance, more threads (cost) but huge
opportunties for parallelization (gain)
Some mental cost in changing the programming paradigm, but there is no
going back :)

Understand how much of ROS-based code is feasible to write this way

c© Andrzej Wąsowski, IT University of Copenhagen 9

Challenges Ahead

Copying semantics and de-allocation of objects rather complex in C++
(comparing to managed languages)
Unclear impact on performance, more threads (cost) but huge
opportunties for parallelization (gain)
Some mental cost in changing the programming paradigm, but there is no
going back :)
Understand how much of ROS-based code is feasible to write this way

c© Andrzej Wąsowski, IT University of Copenhagen 9

RoadMap Ahead

RxROS py

Action Lib
RxROS 2, DDS
RxROS Java? Scala? C#? F#?
We seek contributors!

c© Andrzej Wąsowski, IT University of Copenhagen 10

RoadMap Ahead

RxROS py
Action Lib

RxROS 2, DDS
RxROS Java? Scala? C#? F#?
We seek contributors!

c© Andrzej Wąsowski, IT University of Copenhagen 10

RoadMap Ahead

RxROS py
Action Lib
RxROS 2, DDS

RxROS Java? Scala? C#? F#?
We seek contributors!

c© Andrzej Wąsowski, IT University of Copenhagen 10

RoadMap Ahead

RxROS py
Action Lib
RxROS 2, DDS
RxROS Java? Scala? C#? F#?

We seek contributors!

c© Andrzej Wąsowski, IT University of Copenhagen 10

RoadMap Ahead

RxROS py
Action Lib
RxROS 2, DDS
RxROS Java? Scala? C#? F#?
We seek contributors!

c© Andrzej Wąsowski, IT University of Copenhagen 10

Henrik Larsen
IT University of Copenhagen

Andrzej Wąsowski
IT University of Copenhagen

@AndrzejWasowski

[Reactive]
Programming
with [Rx]ROS

c© Andrzej Wąsowski, IT University of Copenhagen 11

