
© Fraunhofer IPA

1

Nadia Hammoudeh Garcia

ROS-MODEL
COMBINE MDE WITH ROS EVERYDAY CODE

© Fraunhofer IPA

2

WHY? ROS lacks -> MDE advantages

 Fast prototyping

 Maximally flexible

 Collaborative environment

 Hardware independent

 …..

 No quality standards

 No specifications enforced

 Lots of manual code -> Quality depends on the
developer

 No validation at design time -> Runtime test

Model-Driven-Engineering potential benefits?

• Design patterns in application domains

• Model checker techniques

• Generation of code -> Less error-prone

• ……

© Fraunhofer IPA

3

Combine MDE and ROS? New?

 Traditional MDE approach Model-to-text to ensure code quality but for ROS case…

 Boilerplate code low acceptance by ROS community

 Hard to create and maintain THE code template

 This approach ignores the 4000 hand-written open-source ROS packages

Model

ROS
code

Code generator Model extractor

-> Static code analysis

-> Runtime monitor

© Fraunhofer IPA

4

Automatic extraction of ROS models – for single nodes and full systems

- Static code analysis: https://github.com/git-afsantos/haros

- Extract information without executing the code

- Support single nodes and launch files

- Runtime monitor: https://github.com/ipa-led/ros_graph_parser

- Extract model from a running systems

- Parser for rosgraph

https://github.com/git-afsantos/haros
https://github.com/ipa-led/ros_graph_parser

© Fraunhofer IPA

5

Contribution
1) Models (Ecore format)

https://github.com/ipa320/ros-model

ROS Metamodel

- ROS package information

- Nodes and their interfaces (topics, services,
actions)

- Communication objects (msgs, srvs, actions
types)

ROSSystem Metamodel

- Groups of nodes

- Declare namespaces

- Remap interfaces

(roslaunch file information)

https://github.com/ipa320/ros-model

© Fraunhofer IPA

6

Contribution
2) Tooling (eclipse based)

 Graphical interface

 Graphical model editors

 DSLs associated to the models

 Languages parser, typechecker and editor

 Rules for models validation

 Compiler to generate code

 Release available

-> http://ros-model.seronet-project.de/updatesite/

https://github.com/ipa320/ros-model

http://ros-model.seronet-project.de/updatesite/
https://github.com/ipa320/ros-model

© Fraunhofer IPA

7

Contribution
3) HAROS extractor as web service

Web interface: http://ros-model.seronet-project.de/ -> Analyze Open Source code (GitHub)

 ROS node extractor:

 Generates the equivalent ROS models

 Launch file extractor:

 Generates RosSystem model and all the included ROS models for each single node

For private packages: Docker configuration and scripts publicly available: https://github.com/ipa320/ros-model-
cloud

http://ros-model.seronet-project.de/
https://github.com/ipa320/ros-model-cloud

© Fraunhofer IPA

8

Benefits and applications
1) “ROS1” and ROS2 code generator

 “Boilerplate” code generator(templates for C++)

 Extract model from “ROS1” code and auto
generate its equivalent model for ROS2

© Fraunhofer IPA

9

Benefits and applications
2) Identify common design patterns and check specification compliance

 Large scale analysis of components (web interface)

 Compare resulted models to extract common specification patterns

 Tooling includes a function to compare models (model to common specifications)

PackageSet { package {
CatkinPackage scan_2d { artifact {
Artifact scan_2d { node Node { name scan_2d
publisher {
Publisher { name scan message "sensor_msgs.LaserScan"

}}}}}}}}

© Fraunhofer IPA

10

Benefits and applications
3) Diffuse best practices

 ROS naming conventions

 By default only load the common interfaces (msgs/srvs/actions)

© Fraunhofer IPA

11

Benefits and applications
4) ROS Systems introspection at design-time

 Components composition:

 Introspection at design time

 Get a better understanding about what will happen at run time

 Auto-generation of validated launch files and installation bash script

 Auto remap of interfaces

© Fraunhofer IPA

12

© Fraunhofer IPA

13

Benefits and applications
5) Interoperability with other frameworks

 Auto-translation of all the nodes or system to a generic concept of a component

 Component defined as the interfaces that offer to interact with it (inputs and outputs) *

 Allow modularity (systems of components/sub-systems/systems)

 Working example with SeRoNet

 Model-to-model automatic transformation for communication objects (msgs and srvs)

described using primitives: Int, Bool,String…

 Model-to-model semi-automatic transformation for components (“bridge” from ROS interfaces))

*Influenced by the OMG Specification for Deployment and Configuration of Component-based Distributed Applications

© Fraunhofer IPA

14

Summary

 Reuse hand-written code - bottom-up approach

 Improve the understanding of what will happen at runtime

 Components composition and generate roslaunch files

 Check the use of common patterns/specifications

 Encapsuling ROS manually written "everyday code" in a formal structure for the interoperability with
component-based frameworks

© Fraunhofer IPA

15

Future work

 Complete and complement HAROS

 ROS2 extension

 Extractor support for ROS2 (HAROS latest release)

 Generate ROS2 “launch” files

 Tooling eclipse-independent (e.g. web-service)

© Fraunhofer IPA

1616

Bugs? Contributions? Ideas for new applications?

 OPEN ISSUES: https://github.com/ipa320/ros-model/issues

 CONTACT ME: M. Sc. Nadia Hammoudeh Garcia

Project Leader
Robot and Assistive Systems

nadia.hammoudeh.garcia@ipa.fraunhofer.de

https://github.com/ipa-nhg

https://github.com/ipa320/ros-model

THANKS!

https://github.com/ipa320/ros-model/issues
https://github.com/ipa320/ros-model

