

Bridging ROS with MATLAB and Simulink: From Algorithms to Deployment

Shashank Sharma

Application Engineer
MathWorks, Munich, Germany

YJ Lim, Ph.D

Sr. Product Manager
Robotics and Autonomous Systems
MathWorks, Natick, USA

Components of Autonomous Systems

Managing Complexity in Autonomous Systems

Common Challenges of Autonomous Robotics Development

End-to-End workflows In one development environment

What does success look like?

Autonomous System Examples

Autonomous System Examples

Bridging ROS with MATLAB & Simulink From Algorithm Development To Deployment

Model-Based Design Value Proposition

Autonomous Car as an Advanced Robotics System

ROS: communication framework and stack of libraries

Bridging ROS with MATLAB & Simulink

Data: Logging, Streaming, Processing, and Analysis

- Read ROS bag files into MATLAB
 - MATLAB is good at data analysis (timeseries, geometry, sensors, etc.)
- Play back ROS bag data into Simulink
 - Simulink is good at time-based simulation and algorithm prototyping → deployment
- ROS Toolbox handles specialized sensor message types (images, lidar, point clouds, occupancy maps)
- Many customers use ROS bags for offline design even if they don't use ROS in production!

https://www.slideshare.net/jwiegelmann/deep-learning-for-autonomous-driving

13

User Story: Clearpath Robotics

Accelerates Algorithm Development for Industrial Robots

Challenge

Shorten development times for laser-based perception, computer vision, fleet management, and control algorithms used in industrial robots

Solution

Use MATLAB to analyze and visualize ROS data, prototype algorithms, and apply the latest advances in robotics research

Results

- Data analysis time cut by up to 50%
- Customer communication improved
- Cutting-edge SDV algorithms quickly incorporated

An OTTO self-driving vehicle from Clearpath Robotics.

"ROS is good for robotics research and development, but not for data analysis. MATLAB, on the other hand, is not only a data analysis tool, it's a data visualization and hardware interface tool as well, so it's an excellent complement to ROS in many ways." - Ilia Baranov, Clearpath Robotics

<u>Link to user story</u>

Desktop Simulation for Algorithm Development

- Live connectivity from MATLAB and Simulink to ROS and ROS2 (external simulators or hardware)
- Support desktop simulation with MATLAB and Simulink

 Leverage MATLAB, Simulink and Stateflow for Model-Based Design

SETUP SENSE PROCESS **CONTROL VISUALIZE** Optional

ROS Template

```
%% ROS Template
rosinit('ipAddress')
odomSub = rossubscriber('/odom');
[velPub,velMsg] = ...
    rospublisher('/mobile_base/commands/velocity');

r = rateControl(10);
while(r.TotalElapsedTime < 20)
    odomMsg = odomSub.LatestMessage;
% INSERT YOUR ALGORITHM CODE HERE
    velMsg.Angular.Z = ctrlOut;
    send(velPub,velMsg);

plot(r.TotalElapsedTime,ctrlOut)
    waitfor(r)
end</pre>
```

ROS 2 Template

```
%% ROS2 Template
domainId = 1;
node_1 = ros2node('node_1', domainId);
node 2 = ros2node('node 2', domainId);

odomSub = ros2subscriber(node_1, '/odom');
[velPub,velMsg] = ...
    ros2publisher(node_2, '/mobile_base/commands/velocity');

r = rateControl(10);

while(r.TotalElapsedTime < 20)

odomMsg = odomSub.LatestMessage;

% INSERT YOUR ALGORITHM CODE HERE

velMsg.Angular.Z = ctrlOut;
send(velPub,velMsg);

plot(r.TotalElapsedTime,ctrlOut)

waitfor(r)
end</pre>
```


Simulink ⇔ ROS Workflows

Algorithm Development Example

Traffic Sign Recognition and Collision Avoidance

ROS as Communication

Algorithm Development Example

inning

Traffic Sign Recognition and Collision Avoidance

FixedStepDiscrete

View diagnostics 100% T=5.500

Gazebo Co-simulation

Video Display

Application Example

☐ Sign-following Robot

- Detect the color of the sign and send the velocity commands to turn the robot
- Connect with ROS-enabled simulator, i.e., Gazebo
- And connect with hardware

ROS Node Generation

- Can automatically generate, transfer, build, and run ROS nodes from Simulink
- Deploy algorithms as standalone C/C++ ROS nodes
- Once a ROS node is generated, you can:
 - Start and stop node from MATLAB
 - Use External mode to access data and tune parameters from Simulink
 - Use ROS to communicate with node

Application Examples

- ☐ Automated Valet parking using ROS 2
 - Distribute automated parking Valet application among various nodes in a ROS 2 network
 - Deploy as standalone ROS 2 nodes to speed up a simulation

User Story - Voyage Develops longitudinal controls for self-driving taxis

Challenge

Develop a controller for a self-driving car to follow a target velocity and maintain a safe distance from obstacles

Solution

Use Simulink to design a longitudinal model predictive controller and tuned parameters based on experimental data imported into MATLAB using Robotics System Toolbox.

Deploy the controller as a ROS node using ROS Toolbox.

Generate source code using Simulink Coder into a Docker Container.

Results

- Development speed tripled
- Easy integration with open-source software
- Simulink algorithms delivered as production software

Voyage's self driving car in San Jose, California.

"We were searching for a prototyping solution that was fast for development and robust for production. We decided to go with Simulink for controller development and code generation, while using MATLAB to automate development tasks."

- Alan Mond, Voyage

Link to user story

Concluding Remarks

Challenges in autonomous system development

Applying Multidomain Expertise

Features to design complex Algorithms

End-to-End workflows

Evaluate robot performance and operation

Develop Software with Model-Based Design

Bridge ROS with MATLAB and Simulink

Key Takeaway of This Talk

- MATLAB and Simulink capabilities to prototype new algorithms through the ROS interface
- With ROS interface from MATLAB and Simulink users can connect to a live ROS network to access ROS messages
- Robot algorithms can be verified on desktop simulation and by connecting to external robot simulators
- Code generation tools automatically generate ROS nodes and deploy to simulated or physical hardware
- MATLAB and Simulink provide additional design tools, such as
 Technical computing tools, Simulation tools, Control design from low-level to supervisory logic, Algorithm design, and MBD.

MathWorks[®]