

Fraunhofer IPA

The organisation

- ☐ Fraunhofer Gesellschaft: the largest applied research organization in Europe
- Non-profit, network of 80+ institutes, 28k+ employees, €2.8B annual budget
- ☐ Fraunhofer IPA: focus on Manufacturing Engineering and Automation, €70M+ annual budget, located in Stuttgart Germany, the "silicon valley of mechatronics"

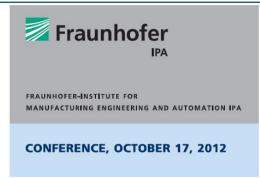
Fraunhofer IPA

Adapting ROS internally

industrial consortium europe

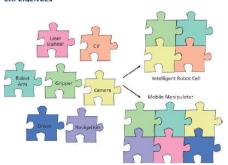
- Early ROS adopters in Europe (since the late 2000s)
- Developers of service robotics platforms (Care-O-bot)
- Piloting with SwRI the ROS-Industrial concept (2012)
- Managing RIC-EU starting in 2014

Care-O-bot 1 (1998)


Care-O-bot 3 (2008)

Care-O-bot 4 (2015)

In house sw


Care-O-bot 2 (2002)

ROS

ROS INDUSTRIAL – AN ENABLER FOR INDUSTRIAL ROBOTICS?

DEVELOPMENT OF INDUSTRIAL APPLICATIONS WITH ROS -

Fraunhofer IPA

Bringing ROS into the Industry

2017 2019 2021

ROS-Industrial

Recent achievements and new horizons

Recent Achievements

New Horizons

ROSIN

Making ROS better, business friendlier and more accessible

better

Software Quality

ROS-I best practices and tools: continuous integration, unit testing, code reviews

ROSIN further improves on them with code scanning, automated test generation, model-in-the-loop testing

rosin-project.eu/softwarequality-assurance

business friendlier

New components

ROSIN FTPs: 3.5 Million € to third parties for ROS-Industrial development.

Develop missing components or improve existing ones.

Commercial release template (licensing, etc)

rosin-project.eu/ftps

more accessible

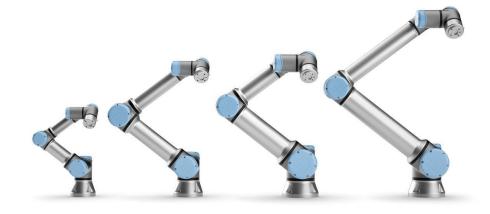
Education

ROSIN summer schools: Educate students

ROS-I academy: Educate professionals

Education projects: Fund your ROS education initiative

rosin-project.eu/education



ROSIN FTP highlights Universal robots

- □ Cooperation between UR & FZI
 - ☐ Driver with official OEM support
 - ☐ Integration of ROS into UR Caps
 - External control
 - Many more

KPI (github)	Value
Contributers	23
Forks	173
Stars	291

☐ Follow-up activities:

https://github.com/PickNikRobotics/Universal_Robots_ROS2_Driver

ROSIN FTP highlights Pilz GmbH & Co. KG

- Project executed by Pilz GmbH & Co. KG
 - ☐ Generating LIN, PTP and CIRC trajectories
 - Industrial accuracy and performance

KPI (github)	Value
Contributers	12
Forks	26
Stars	81

☐ Follow-up activities:

https://github.com/ros-planning/moveit/tree/master/moveit_planners/pilz_industrial_motion_planner

ROSIN FTP highlights Cyberbotics

- Project executed by Cyberbotics
 - ☐ Porting of the epuck robot to ROS 2
 - ☐ Real and simulated e-puck interfaces in webots
 - □ ROS2 support for the webots interface

KPI (github)	Value
Contributers	3
Forks	9
Stars	17

- ☐ One of the first robots supporting ROS2
- Webots is now part of ROS core packages (https://www.ros.org/reps/rep-2005.html)

ROSIN FTP results

Champion PAL Robotics S.L., Spain

ros control for ROS2

Champion PAL Robotics S.L., Spain

ROBIN

Champion INESC TEC, Portugal https://github.com/ScalABLE40/robin

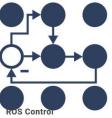
ROS2 Integration Service

Focused Technical Project (FTP) of EU H2020 project *732287 :::ROSin

ROS2 Integration Service

Champion eProsima - Proyectos y Sistemas de Mantenimiento SL.

https://github.com/eProsima/ROS2-Integration-Service


ROsBOBO

MANUFACTURA DE Champion INGENIOS TECNOLOGICOS SL.

https://github.com/mintforpeople /robobo-gazebo-simulator

RedROS2-I

Champion ALIAS ROBOTICS, Spain https://github.com/aliasrobotics

Champion PAL Robotics S.L.,

https://github.com/pal-roboticsforks/ros_control2

Champion

roScan

Prognostics and Health Management Tool for ROS

Champion Inovasyon Muhendislik Ltd. Sti., Turkey https://github.com/inomuh/phm_tools

RedROS-I

/aztarna

Champion ALIAS ROBOTICS. Spain https://github.com/aliasrobotics **ROS Industrial Indoor Positioning System**

≡ roScan

Bosch Engineering

GmbH, Germany

Champion Inovasyon Muhendislik Ltd Sti., Turkey

https://github.com/inomuh /indoor_localization

Rvis2AR - Visualization platform for AR / VR devices

Awesome Technologies Innovationslabor GmbH, Germany

https://github.com/Awesome-Technologies/Rviz2AR

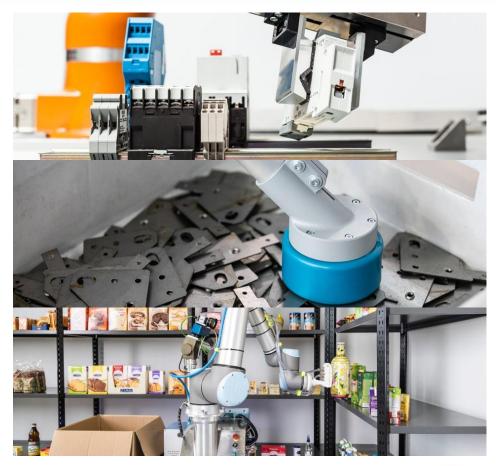
Checkout https://www.rosin-project.eu/results

ROS-Industrial

Recent achievements and new horizons

Recent Achievements

New Horizons



Cognitive Robotics & Al Innovation Center

ROS-I lighthouse in Baden-Württemberg - Germany

- Pre-funding of 2 M€ acquired in 2019 from regional government
 - ☐ Until now 41 transfer projects with companies from BW executed by center (Sick, Pilz, Siemens, ...)
- ☐ Follow-up funding of 23 M€ acquired in 2021 for coming four years
 - □ Approximately 10 M€ are invested in new and improved ROS based technologies
 - □ 30% of the developments are foreseen for open source release

Hybrid model-driven engineering for ROS

Problem	ROS-Industrial Solution
No integrated development solution available	Graphical ROS development toolchain
ROS-based robot systems are complex to understand	Graphical modeling of ROS-systems and - components
Ecosystem packages not modeled	Model-extraction using static and dynamic analysis approaches
MBSE is not common in the ROS community	Generation of boilerplate code for hand-written nodes
Testing by trial-and-error method	Validation of the composition and autogeneration of deployment artifacts

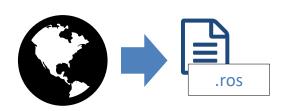
Contact:

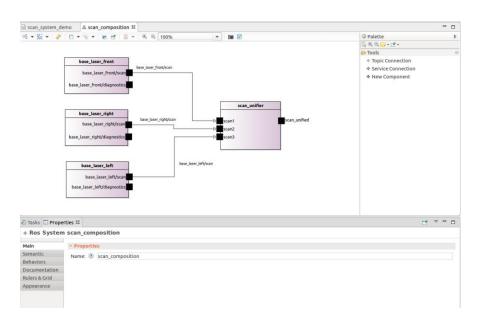
Nadia Hammoudeh García +49 711 970-1067 nhg@ipa.fraunhofer.de

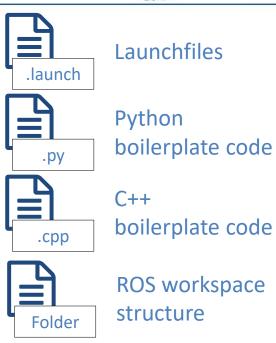
Technology readiness:

ROS1: Tested

ROS2: Under development


Sources:


https://github.com/ipa320/ros-model



Hybrid model-driven engineering for ROS

Step 1: Model-extraction

Step 2:Graphical ROS system design

Step 3: Generating ROS files

Model-based observer generation

Goal:

Model-based diagnosis and monitoring framework for running ROS systems

Features:

ROS Graph Observer:

Continuous evaluation of ROS components and interfaces

□ Property Observer:

Design-time application-independent generation of property observers (ranges or complex functions)

☐ Integration with common ROS diagnostics tools

Contact:

Harshavardhan Deshpande +49 711 970-3737 hsd@ipa.fraunhofer.de

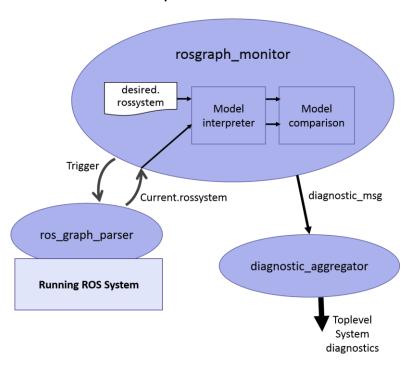
Technology readiness:

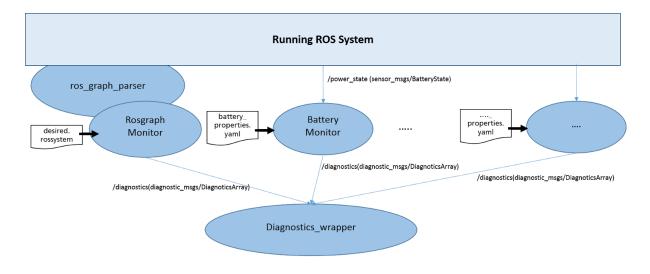
ROS1: Tested – Documentation in

progress

ROS2: Under development

Sources:


https://github.com/rosin-project/rosgraph_monitor


Model-based observer generation

ROS Graph Observer

Property Observer

Cognitive Robotics & Al Innovation Center

ROS development roadmap

	 ROS2 Runtime Reliability: Automated redundant deployment Gluecode and monitors generation 	
2021	2022	
 ROS2 Model-Driven Development: Component model extraction Interface Documentation generation Launchfile generation Runtime checkers 	 ROS2 Model-Driven Development: Modeling Hardware characteristics Kinematic model generation (URDF) Deployment artifact generation 	

Cognitive Robotics & Al Innovation Center

ROS application development

- ☐ Easy programming for welding robots
 - Seam detection
 - □ Collision-free, optimal path planning
 - Work piece pose detection
 - □ Easy programming through ROS integration in UR caps
- Want to test?
 - ☐ Contact:

Johannes.Stoll@ipa.fraunhofer.de

ROS 2 Industrial Training

More information:

Harsh Deshpande +49 711 970-3737 hsd@ipa.fraunhofer.de

Christoph Hellmann Santos +49 711 970-1097 cmh@ipa.fraunhofer.de

Description

The ROS 2 Industrial Training teaches the basics of ROS 2 and how to use ROS 2 for manipulation and for navigation. The class is completed by a session of best practices, which teaches how ROS 2 development is done best. The goal of the training is to get all the information needed to start developing with ROS.

Attendees should have basic knowledge:

- Linux and Terminal
- Python

Cost:

800€ (Remote), 1200€ (Presence), 0€ (ROS-I Members)

Planned trainings in 2021:

- ◆ 18. 21.05.2021 (Remote)
- ❖ 21. 24.09.2021 (Remote)
- ❖ 16. 19.11.2021 (TBD)

Agenda

Day	Courses
Day 1 10:00 – 16:30	ROS 2 basic concepts ROS 2 file system ROS 2 terminal
Day 2 10:00 – 16:30	ROS 2 extended concepts ROS 2 handling coordinates with tf2 ROS 2 manipulation basics
Day 3 10:00 – 16:30	ROS 2 navigation basics and localization ROS 2 slam ROS 2 navigation
Day 4 10:00 – 12:30	ROS 2 Best practices

ROS-Industrial Consortium Europe

Nobelstr. 12 70569 Stuttgart, Germany

