

Full_coverage_path_planner
&

Tracking_pid
ROSIN: Experiences and outcomes

About

Nobleo: consulting & projects in high-tech
Robotics, mechatronics, embedded SW, computer vision
ASML, NXP, Bosch Rexroth, Ultimaker, Heineken


Loy van Beek (loy.van.beek@nobleo.nl)

At Nobleo since 2015, Nobleo Projects since 2018
RoboCup@Home with TechUnited Eindhoven since 2011

Full coverage path planning

Needed for cleaning, painting, inspection, …
No FCPPs available in ROS-Industrial

Auburn University’s automow?
7 years since last commit
No docs, written for a competition
Vector represented maps
In Python, using Shapely library

Full coverage path planning

ROSIN, stage 1: Minimal Viable Product
Requirements:

Map: known OccupancyGrid
Dynamic Obstacles: handled by local planner

Nobleo developed a global planner & local planner to
accurately follow global path
Most work done by colleagues:

Yury Brodskiy: algorithm implementation
Michiel Franke: controller

My work: refactoring, MoveBase-plugins & testing

Full coverage path planning

Backtracking Spiral Algorithm
Enrique González et al.

Map is discretized by coverage tool size
Core separated from ROS

Easier testing
Easier port to ROS 2 later

Wrapped as nav_core::BaseGlobalPlanner
Goal is ignored, serves as trigger only

Full coverage path planning

 Local planners take shortcuts on coverage paths


Tracking_pid

Tracking_pid

Accurately follow path, reproducable
Do not deviate from path!
Pause for obstacles
Do not go to end ASAP!
PID controller on X and Y error

 wrt. carrot moving at fixed speed
nav_core::BaseLocalPlanner, core
ROS-independent

 Tuning via dynamic_reconfigure
 Debug intermediate P, I, D outputs

Tracking_pid

Applications
 Wall cleaning https://youtu.be/4dMjt_Pj4og


Tracking_pid compensates for
wheel shear by rotating robot

https://youtu.be/4dMjt_Pj4og

Applications

Autonomous Harbor Cleaning: RanMarine WasteShark
- Tracking_pid as virtual anchor

Testing

Refactored original code for test-ability
ROS-independent parts separated

Testing
Unittests with GTest
Coverage algorithm is tested against 1000 random maps

Expected result: determined by OpenCV FloodFill
Tests run in BitBucket with ROS-Industrial CI

PR accepted to make script provided for BitBucket
executable: 100644 100755→

Testing

Conclusion

Great initiative
Requires to make in-house SW more generic, thorough

TODO beyond MVP
Adhere to vehicle constraints
Different coverage algorithms
Property-based testing

Generate more test-cases
E.g. use CppQuickCheck/QuickCheck++/RapidCheck

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

