
ROS Software Quality Assessment
through Static Code Analysis and

Property-Based Testing
ROS-Industrial Conference 2018

André Santos Alcino Cunha Nuno Macedo

INESC TEC & University of Minho, Portugal

December 12, 2018

Software Quality Matters

Many robotic applications can be considered safety-critical systems.

Detecting defects early reduces costs and development time.

André Santos 1/20

Software Quality Matters

There are many excellent static analysis tools already available.

But none provide a ROS-specific analysis.

André Santos 2/20

The ROS Computation Graph

The network of nodes and resources in a ROS system is called the
Computation Graph.

Expressing properties at the level of the Computation Graph is more
intuitive than at the source code level.

How can we check that such properties hold?

André Santos 3/20

The HAROS Framework

HAROS (High-Assurance ROS) is a static analysis framework for ROS.

[New in v3.0]
HAROS is capable of reverse-engineering the Computation Graph.

André Santos 4/20

The HAROS Framework

HAROS provides visualisation of the extracted Graph.

André Santos 5/20

A Metamodel for ROS

André Santos 6/20

Model Extraction from Source Code

Extracting such a model from source code requires parsing C++ and launch
files.

Conditionals and unknown values are also recorded during this process.

Users can resolve unknown values by providing extraction hints.

André Santos 7/20

Applications of the Computation Graph

A reconstructed Computation Graph enables the verification of
architecture-related properties through various methods.

André Santos 8/20

Querying the Computation Graph

User-defined queries are a way to implement simple checks over the
structure of the extracted graph.

Queries are written with PyFlwor (/timtadh/pyflwor).

André Santos 9/20

Querying the Computation Graph

At most, one publisher per topic:

1 topics[len(self.publishers) > 1]

Parameters are read-only:

1 parameters[len(self.writes) > 0]

Type checking for topics:

1 for t1 in <nodes/publishers | nodes/subscribers >,

2 t2 in <nodes/publishers | nodes/subscribers >

3 where t1.topic_name == t2.topic_name

4 and t1.type != t2.type

5 return t1, t2

André Santos 10/20

Testing in ROS

Some properties cannot (or are hard to) be checked at static time.

If a ”stop” message is published, then a
”bumper pressed” message was received before.

Testing node interfaces is often done with manual test cases.

André Santos 11/20

Property-based Testing for ROS

Testing component interfaces in terms of their properties is one of the
scenarios where Property-based Testing shines.

The same principle can be applied to a ROS configuration. The major
challenge is asynchronous communication.

André Santos 12/20

Property-based Testing for ROS

The setup for a PBT ROS node is always the same.

1. Initialise ROS node.

2. Advertise a number of topics (test input data).

3. Subscribe a number of topics (test output data).

4. Publish random messages, in a random sequence.

5. Check properties when messages are received or when a time interval
has elapsed.

The Computation Graph and its properties are the variables.
Thus, we can implement a test script generator.

André Santos 13/20

Property-based Testing for ROS

Our test generator takes in a ROS Computation Graph and produces a
template test node.

We used Hypothesis (/HypothesisWorks/hypothesis) as the base
Property-based Testing library.

André Santos 14/20

Property-based Testing for ROS

By default, the generated script just tests for crashes.

It contains a blank internal state, for users to specify properties.

1 class InternalState(object):

2 def __init__(self):

3 self.on_setup ()

4

5 def on_setup(self):

6 pass

7

8 def on_pub__events__bumper(self , event):

9 pass

10

11 def on_sub__cmd_vel(self , event):

12 pass

André Santos 15/20

Property-based Testing for ROS

Stop message published ⇒ a bumper is pressed.

1 class InternalState(object):

2 def __init__(self):

3 self.on_setup ()

4

5 def on_setup(self):

6 self.bumper_pressed = False

7

8 def on_pub__events__bumper(self , event):

9 self.bumper_pressed = \

10 event.msg.state == BumperEvent.PRESSED

11

12 def on_sub__cmd_vel(self , event):

13 if event.msg.linear.x == 0:

14 assert self.bumper_pressed

André Santos 16/20

Property-based Testing for ROS

When a counterexample is found, a trace is produced.

1 FAILED (failures =1)

2 ===

3 state = RosRandomTester ()

4 state.pub__events__wheel_drop(msg={ wheel: 1, state: 1})

5 state.spin()

6 state.teardown ()

7 ---

8 Time spent on testing (s): 0.576339435

9 Time spent on sleeping (s): 5.8

10 Time spent setting up (s): 57.640097381

André Santos 17/20

Sneak Peek: A Property Specification Language

The language should be able to express:

> constraints over message fields (e.g. enumerations, ranges);

1 publish(c, cmd_vel) where c.linear.x in -0.5 to 1.5

> node publication rates and timeouts;

1 publish(c, cmd_vel) at 10 hz

> reactive behaviours (e.g. receive X leads to publish Y).

1 receive(e, events/bumper) where e.state = PRESSED

2 leads to publish(c, cmd_vel)

3 within 0.1 s where c.linear.x == 0

This language can be used to generate property-based tests,
runtime monitors, node templates, documentation . . .

André Santos 18/20

Final Remarks

Summary

> Static analysis has the potential to find defects early on.

> Common static analysis tools are not ROS-specific.

> HAROS can statically extract the Computation Graph . . .

> to enable static analysis with queries;

> to generate property-based tests.

Near future goals

> Apply the analysis to industrial robots at INESC TEC.

> Finish the property specification language.

> Enhance the model extraction capabilities of HAROS.

André Santos 19/20

Questions?
Demonstration video at

https://youtu.be/vuDxybomXd4

IROS and A-TEST papers at
haslab.uminho.pt/afsantos/publications

This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competi-
tiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency,
FCT – Fundação para a Ciência e a Tecnologia within project PTDC/CCI-INF/29583/2017 (POCI-01-0145-FEDER-029583).

