
ROS 2: What’s new?
February 2020

Jacob Perron

Just in case...

● What is ROS?
○ http://www.ros.org/

● Who is Open Robotics?
○ We work on ROS, Gazebo, ROS 2, Ignition
○ https://www.openrobotics.org

● What is the difference in ROS and ROS 2?
○ https://design.ros2.org/articles/why_ros2.html

● What is the difference in Gazebo and Ignition?
○ https://ignitionrobotics.org/docs/all/overview#what-is-ignition-robotics

http://www.ros.org/
https://www.openrobotics.org/careers
https://design.ros2.org/articles/why_ros2.html
https://ignitionrobotics.org/docs/all/overview#what-is-ignition-robotics-

Introductions

● Presenter:
○ Jacob Perron <jacob@openrobotics.org>

@jacobperron
● People who actually did the work:

● ROS 2 development team @ Open Robotics
● You (the community)

mailto:jacob@openrobotics.org

WIP: Foxy logo

Eloquent Elusor
November 22nd, 2019

Foxy Fitzroy (LTS)
May 23rd, 2020

● Author:
○ Siddharth Kucheria @skucheria

● Code:
○ https://github.com/ros2/ros2cli/tree/master/ros2interface

● What is ros2interface?
○ Tool for showing information about ROS interfaces
○ Supports actions and IDL
○ Replaces ros2msg and ros2srv
○ ROS 1: rosmsg and rossrv

ros2 interface

https://github.com/ros2/ros2cli/tree/master/ros2interface
http://wiki.ros.org/rosmsg

ros2 interface
$ ros2 interface -h

Show information about ROS interfaces

optional arguments:

 -h, --help show this help message and exit

Commands:

 list List all interface types available

 package Output a list of available interface types within one package

 packages Output a list of packages that provide interfaces

 proto Output an interface prototype

 show Output the interface definition

● Author:
○ Claire Wang @claireyywang

● Code:
○ https://github.com/ros2/ros2cli/tree/master/ros2doctor

● What is ros2doctor?
○ Tool for ROS system check-up
○ ROS 1: roswtf

ros2 doctor

https://github.com/ros2/ros2cli/tree/master/ros2doctor
http://wiki.ros.org/roswtf

● Reports:
○ RMWs installed
○ Package versions (Foxy)
○ ROS distribution info
○ Network info
○ Topic list

● Checks:
○ Warn about newer upstream package versions (Foxy)
○ Warn about unsupported ROS distribution
○ Warn about missing loopback/multicast IP address
○ Warn about unconnected subscriptions and publishers

ros2 doctor

$ ros2 doctor --report

$ ros2 doctor

ros2 doctor

$ ros2 doctor hello

● Hello?
○ Check if multiple hosts can communicate with each other
○ Available in ROS Foxy

● Authors:
○ Michel Hidalgo @hidmic
○ Ivan Santiago Paunovic @ivanpauno
○ William Woodall @wjwwood

● ROSCon 2019:
○ https://vimeo.com/379127678

● What is launch?
○ Configure and start your ROS system
○ ROS 1: roslaunch

● Code:
○ https://github.com/ros2/launch

Markup for launch

https://vimeo.com/379127678
http://wiki.ros.org/roslaunch
https://github.com/ros2/launch

Markup for launch
from launch import LaunchDescription

from launch_ros.actions import Node

def generate_launch_description():

 return LaunchDescription([

 Node(package='demo_nodes_cpp', node_executable='talker', output='screen'),

 Node(package='demo_nodes_cpp', node_executable='listener', output='screen'),

])

Markup for launch

<launch>

 <node pkg="demo_nodes_cpp" exec="talker" output="screen" />

 <node pkg="demo_nodes_cpp" exec="listener" output="screen" />

</launch>

from launch import LaunchDescription

from launch_ros.actions import Node

def generate_launch_description():

 return LaunchDescription([

 Node(package='demo_nodes_cpp', node_executable='talker', output='screen'),

 Node(package='demo_nodes_cpp', node_executable='listener', output='screen'),

])

Markup for launch

<launch>

 <node pkg="demo_nodes_cpp" exec="talker" output="screen" />

 <node pkg="demo_nodes_cpp" exec="listener" output="screen" />

</launch>

launch:

 - node: {pkg: "demo_nodes_cpp", exec: "talker", output: "screen"}

 - node: {pkg: "demo_nodes_cpp", exec: "listener", output: "screen"}

from launch import LaunchDescription

from launch_ros.actions import Node

def generate_launch_description():

 return LaunchDescription([

 Node(package='demo_nodes_cpp', node_executable='talker', output='screen'),

 Node(package='demo_nodes_cpp', node_executable='listener', output='screen'),

])

http://design.ros2.org/articles/roslaunch_xml.html

http://design.ros2.org/articles/roslaunch_xml.html

● How does it work?
○ Map markup to an intermediate representation

Markup for launch

http://design.ros2.org/articles/roslaunch_frontend.html

<launch>

 <node pkg="demo_nodes_cpp" exec="talker" output="screen" />

 <node pkg="demo_nodes_cpp" exec="listener" output="screen" />

</launch>

Entity (type: ‘launch’)

 children: [

 Entity(type: ‘node’),

 Entity(type: ‘node’)

]

LaunchDescription([

 Node(...),

 Node(...),

])
Parser

http://design.ros2.org/articles/roslaunch_frontend.html

● TODO
○ Parsers for more launch entities

■ E.g. LifecycleNode, ComposableNode, Events
○ Documentation
○ API review

Markup for launch

<!-- Eloquent -->

<node node-name="my_talker" pkg="demo_nodes_cpp" exec="talker" />

<!-- Foxy -->

<node name="my_talker" pkg="demo_nodes_cpp" exec="talker" />

● Authors:
○ Peter Baughman @pbaughman
○ William Woodall @wjwwood
○ Michel Hidalgo @hidmic

● ROSCon 2019:
○ https://vimeo.com/378683186

● Code:
○ https://github.com/ros2/launch

launch_testing

https://vimeo.com/378683186
https://github.com/ros2/launch

● Successor to rostest from ROS 1
○ Good:

■ Launch ROS system with tests; exit when tests finish
■ Testing in isolation

○ Bad:
■ Tests might run before ROS system is ready
■ Crashes are not detected by tests
■ Testing process output is not straight forward

● Bad things are fixed in ROS 2

launch_testing

http://wiki.ros.org/rostest

launch_testing
@pytest.mark.launch_test

def generate_test_description():

 launch_description = IncludeLaunchDescription(

 PythonLaunchDescriptionSource('talker_listener.launch.py'))

 return LaunchDescription([

 launch_description,

 ReadyToTest(),

])

Continued on next slide ...

launch_testing
class TestTalkerListener(unittest.TestCase):

 def test_talker_talks(self, proc_output):

 proc_output.assertWaitFor(

 process='talker',

 expected_output="Publishing: 'Hello World: 3'",

 timeout=5.0

)

 def test_listener_hears(self, proc_output):

 proc_output.assertWaitFor(

 process='listener',

 expected_output='I heard: [Hello World: 3]',

 timeout=5.0,

)

launch_testing
● Run tests with ros2test:

● Alternatively, with pytest:

$ pytest test_talker_listener.py

$ ros2 test test_talker_listener.py

● TODO
○ Run tests in separate processes (e.g. gtests)
○ Documentation and tutorials
○ Record ROS messages for post-shutdown tests
○ Frontend support

launch_testing

● Author:
○ Jacob Perron @jacobperron

● Code:
○ https://github.com/ros-visualization/interactive_markers/tree/ros2
○ https://github.com/ros-visualization/visualization_tutorials/tree/ros2/visualization_marker_tutorials

Interactive markers

https://github.com/ros-visualization/interactive_markers/tree/ros2
https://github.com/ros-visualization/visualization_tutorials/tree/ros2/visualization_marker_tutorials

Interactive markers

Interactive Marker
Server

GetInteractiveMarkers.srv

InteractiveMarkerFeedback.msg Interactive Marker
Client

InteractiveMarkerUpdate.msg

● Many clients can connect to a server
● Updates contain sequence numbers

○ If client misses an update, request all markers

TFMessage.msg

e.g. RViz

Interactive markers

auto node = std::make_shared<rclcpp::Node>("foo_node");

interactive_markers::InteractiveMarkerServer server("bar_marker_namespace", node);

visualization_msgs::msg::InteractiveMarker marker;

// ... populate interactive marker

server.insert(marker, std::bind(&feedbackCallback, _1));

server.applyChanges();

rclcpp::spin(node);

● Server will update pose of markers by default
○ Feedback callback is optional

● Python support for server (not client)

● Example server usage:

● TODO:
○ ROS 1 bridge support
○ Add more tests
○ Documentation
○ Python interactive marker client

Interactive markers

● RMW support for loaned messages
○ ROSCon 2019: https://vimeo.com/379127778

● Navigation2: https://github.com/ros-planning/navigation2

● Passing node parameters from CLI
● Stream logging macros (e.g. RCLCPP_INFO_STREAM)
● And more:

https://index.ros.org/doc/ros2/Releases/Release-Eloquent-Elusor/

Other things in Eloquent Elusor

https://vimeo.com/379127778
https://github.com/ros-planning/navigation2
https://index.ros.org/doc/ros2/Releases/Release-Eloquent-Elusor/

● Node to DDS participant mapping improvement
● Changes to rclcpp and rclpy API
● Python API for rosbag2
● MoveIt! 2: https://github.com/ros-planning/moveit2

● ROS 2 Java
● Better documentation🤞
● Node description language: https://github.com/ros2/design/pull/266

● Package quality categories: https://github.com/ros-infrastructure/rep/pull/218

● And more: https://github.com/ros2/ros2/issues/830

What to expect in Foxy Fitzroy?

https://github.com/ros-planning/moveit2
https://github.com/ros2/design/pull/266
https://github.com/ros-infrastructure/rep/pull/218
https://github.com/ros2/ros2/issues/830

● Link to these slides:
○ http://tiny.cc/ros2-whats-new

● Eloquent Release page:
○ https://index.ros.org/doc/ros2/Releases/Release-Eloquent-Elusor/

● Foxy Release page (WIP):
○ https://index.ros.org/doc/ros2/Releases/Release-Foxy-Fitzroy/

● Contribute:
○ ROSCon 2018: https://vimeo.com/292699328

 Questions?

More links

http://tiny.cc/ros2-whats-new
https://index.ros.org/doc/ros2/Releases/Release-Eloquent-Elusor/
https://index.ros.org/doc/ros2/Releases/Release-Foxy-Fitzroy/
https://vimeo.com/292699328

