
© 2021 Apex.AI, Inc.

Ⓡ

The vehicle OS company.

Apex.OS - A safety-certified
software framework  
based on ROS 2

Jan Becker

© 2021 Apex.AI, Inc.

My background

2

1997 1998 1999 2000 2001 2002 2003 2004

© 2021 Apex.AI, Inc.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2021

2007-2010 AD at Stanford2002-2006 ADAS at BOSCH1997-2001 AD with Volkswagen

2010- Lecturer at Stanford University

Dr. Jan Becker
CEO and C0-Founder Apex.AI  
Lecturer at Stanford

© 2021 Apex.AI, Inc. 2

2010-2014 Robotics at BOSCH

2016-2017 FF2011-2015 AD at BOSCH

2017-

2009- ROS core development

© 2021 Apex.AI, Inc. 3

The evolution from ROS 1 to Apex.OS Cert

© 2021 Apex.AI, Inc.

Apex.OS

POSIX RTOS

ROS 2

Linux

ROS 1

Linux

ROS 1 → ROS 2
• Improved code quality

• Smaller, more optimized code

• DDS middleware

• Testing and documentation

ROS 2 → Apex.OS
• Real-time execution

• Real-time data logging

• Complete documentation

• Tests, tests, test

• Support for automotive

hardware

• More tools

• 24/7 customer support

Apex.OS Cert

QNX for Safety

Apex.OS → Apex.OS Cert
• Functional safety certification (ISO

26262, SEooC, up to ASIL D)

• Fully deterministic software execution

• Apex.AI specific extensions

Algorithms and Functions

Software Framework

Data Transport

Kernel, Scheduler, Driver

Hardware

DDS

ROS 1
• Software framework 

for robotics

• Huge adoption in AV industry

DDS

03/2021

DDS

2010 E2017

© 2021 Apex.AI, Inc. 4

Apex.Middleware

© 2021 Apex.AI, Inc.

Apex.OS

POSIX RTOS

ROS 2

Linux

ROS 1

Linux

Apex.OS Cert

QNX for Safety

Algorithms and Functions

Software Framework

Data Transport

Kernel, Scheduler, Driver

Hardware

DDS Apex.Middleware Apex.Middleware Cert

© 2021 Apex.AI, Inc.

Automotive Industry

5

TODAY 
Hardware-defined vehicle

TOMORROW 
Software-defined vehicle

YESTERDAY 
Hardware-defined phone

TODAY 
Software-defined smartphone

 IT and Telecommunication Industry

The challenge

Scalability

Flexibility Specific to compute
hardware and RTOS

$

Apex.OS enables non-expert
developers to develop reliable
complex applications

Apex.OS makes applications
independent from specific hardware
and operating systems

Apex.OS reduces application cost

Apex.OS enables you to build
software that scales massively

Apps are hardware-agnostic and  
run on every phone model

Applications scale across the
whole ecosystem

Applications don’t
scale

Labor
Function development
is labor-intense

Every student can build
robust apps

Function development
is labor-intense

Specific to compute
hardware and OS

Cost High and recurring
application cost$$$$ Low application cost$$$ High and recurring

application cost

Applications don’t
scale across domains

© 2021 Apex.AI, Inc. 1 https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-case-for-an-end-to-end-automotive-software-platform

Automotive software does not
scale to complex software
systems required to solve the
mega trends autonomous,
connected, shared, electric
mobility.

OEMs are in need of an end-to-
end operating system that is
robust and flexible to address all
vehicle requirements (ADAS,
AD, powertrain, body, chassis,
infotainment).1

Existing prototype software
does not scale to automotive
production levels of safety.

© 2021 Apex.AI, Inc.

Automotive Industry

6

TODAY 
Hardware-defined vehicle

Basic functions

RTOS

Hardware

YESTERDAY 
Hardware-defined phone

TODAY 
Software-defined smartphone

Millions of apps

enabled by SDK

OS

Hardware

Few predefined apps

OS

Hardware

 IT and Telecommunication Industry

The solution — SDK-like abstraction by Apex.OS

Android/iOS SDK has democratized
App development.

© 2021 Apex.AI, Inc.

SDK-like abstraction  
for all vehicle domains.

SDK

TOMORROW 
Software-defined vehicle

Complex functions

SDK

RTOS

Hardware

© 2021 Apex.AI, Inc.

Automotive Industry

7

TODAY 
Hardware-defined vehicle

TOMORROW 
Software-defined vehicle

YESTERDAY 
Hardware-defined phone

TODAY 
Software-defined smartphone

 IT and Telecommunication Industry

The benefits

Scalability

Flexibility

Applications don’t
scale across domains

Specific to compute
hardware and RTOS

$ reduces application cost

makes applications independent
from hardware and operating
systems

enables non-expert developers
to develop reliable complex
applications

enables software that scales
massively

Apps are hardware-agnostic and  
run on every phone model

Applications scale across the
whole ecosystem

Applications don’t
scale

Labor
Function development
is labor-intense

Every student can build
robust apps

Function development
is labor-intense

Specific to compute
hardware and OS

Cost High and recurring
application cost$$$$ Low application cost$$$ High and recurring

application cost

© 2021 Apex.AI, Inc. 8

The situation — Automotive industry is moving to a centralized hardware architecture

© 2021 Apex.AI, Inc.

• Communication via central
gateway

• Cross-functional connection

• Ability to handle slightly

more complex functions

• Communication between
ECUs within isolated
domains

• Domains: body/comfort,
chassis, powertrain,
infotainment, ADAS

• 3-4 independent networks

• Independent ECUs

• Isolated functions

• Each function has its ECU

• Limited to simple

functionality

• High-performance compute
• Virtual domains
• Ethernet backbone
• Complex functions
• Will not work without end-to-

end integrated software

• Domain controller (DC) take
over computation

• Handles complex functions

• Consolidation of functions→

cost optimization

• End-to-end software enables

faster time to market and cost
savings

1st 2nd

Distributed Domain Centralized Vehicle Centralized

3rd

Today

4th 5th

Main
features

High-level
architecture

Generation

E/E
architecture

Body Chassis Powertrain Central gateway

Central gateway

Central gateway

Infotainment

DC DC DC

But the required end-to-end operating system doesn’t exist yet1

1 https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-case-for-an-end-to-end-automotive-software-platform

HPC

© 2021 Apex.AI, Inc.

ROS in automotive

9

All major automotive and
robotic players use ROS for
prototyping —  
representing 80% of

automotive ecosystem.

ROS provides access to the
by far largest developer and
user community. 

>38,000,000 downloads

>200,000 users

>80,000 software packages

>20,000 developer

>1,000 robots and vehicles

Largest developer and user community
© 2021 Apex.AI, Inc. 9

ROS at universities

• >95% of universities use ROS

for teaching and research.

• All university competitions sich

as DARPA / Indy Autonomous
Challenge use ROS.

Every robotics student leaving
university knows ROS.

Validated in many
applications

ROS is running in

• cars and trucks

• mining and construction

• agriculture

• medical robots

• industrial automation

• personal robots

• drones and eVTOL

• IoT

© 2021 Apex.AI, Inc.

Target

10

ROS
1. A standardized software architecture with open APIs to enable mutually

compatible solutions ideally across many manufacturers, suppliers, and
academia.  

2. An awesome developer experience to enable developer productivity – based on
the understanding that the quality of the developer experience is directly related to
their productivity.  

3. A software architecture that scales to massive software systems.  

4. A software implementation based on modern software engineering practices.  

5. Abstraction of the complexity of all underlying hardware and software.  

6. Deterministic, real-time execution, automotive functional safety certification.  

© 2021 Apex.AI, Inc.

Software architecture considerations

1. hardware abstraction layer

2. OS abstraction layer

3. runtime layer

4. support for various programming languages

5. non-functional performance

6. security

7. safety

8. software updates

9. tools for the development, debugging, recording & replay, visualization, simulation

10.tools for continuous integration and continuous deployment (CI/CD)

11.interfaces to the legacy systems (such as e.g., AUTOSAR Classic)

12.execution management for user applications

13.time synchronization

14.support for hardware acceleration

15.model-based development

11

© 2021 Apex.AI, Inc.

ROS architecture

12

User application

middleware

implementation A

rcl / rclcpp - ROS client library
nodes, services, parameters, timing, console logging, topology graph, utilities

rmw - ROS middleware API

abstraction layer for nodes and services

middleware

implementation B

middleware

implementation C …

hardware 1

e.g. x86

hardware 2

e.g. aarm64

hardware 3

GPU …

© 2021 Apex.AI, Inc.

Developer experience

13

Tools, tools, tools

1. Data Visualization

2. System visualization

3. Record and playback

4. Introspection

5. Emulation and simulation

6. Command line tools

7. Development environment 

https://ade-cli.readthedocs.io/

8. Many more at http://

wiki.ros.org/Tools A

ADE

Container

ade_image

Base image

Apex.OS CLion Apex.Middleware Autoware.Auto Others tools

Volumes

Compiled  
Apex.OS

IDE Middleware Open-source

3rd party libs

Large 3rd party

libs

https://ade-cli.readthedocs.io/
http://wiki.ros.org/Tools
http://wiki.ros.org/Tools
http://wiki.ros.org/Tools

© 2021 Apex.AI, Inc.

Software architecture that scales

14

5C’s principle of separation of concerns

1. Functional Entities (Computations) deliver

the functional, algorithmic part of a system,
that is, the continuous time and space
behavior. A Functional Entity can be a
composite entity in itself, following the
same pattern of composition.

2. A Coordinator to select the discrete
behavior of the entities within its own level
of composition, that is, to determine which
continuous behavior each of the Functional
Entities in the composite must have at each
moment in time.

3. Functional data Communication handles
the data exchange behavior between
Functional Entities.

4. A Configurator configures the entities
within a level of composition.

5. A Composer constructs a composition by
grouping and connecting entities.

© 2021 Apex.AI, Inc.

Modern software engineering practices

15

1. An integrated development environment: e.g. centered around Gitlab/Github, CI/CD and docker.  

2. An integrated IDE: e.g. Clion. Clion provides all of the state of the art features such as code completion, debugging
but also integration of external tools such as e.g. gtest, valgrind, different build tools, doxygen, tool for code test
coverage.  

3. Deliver often: The steps implementing the development process must be fast to allow agile coding iterations.  

4. Test constantly: The local development environment and the CI/CD must be equivalent to be able to reproduce CI
failures.  

5. Tools follow the purpose (and not the other way around): Integrations with the 3rd party tools, such as a
requirements management tool, are tailored to the particular team to allow for the quick fixes and extensions.  

6. Single source of truth: The main code repository should be as monolithic as possible and all of the development
artifacts (design documents, code, tests, documentation, ...) should be as co-located as possible.

© 2021 Apex.AI, Inc.

Certification process

16

Automotive
Stakeholder
Requirements  
(ASR)

builtin_interfaces

connext_micro_support

allocator

logging

rclcpp

threading

Feature set
reduction

Apply real-time
and determinism
constraints

1. Memory static
2. Remove
blocking calls
and recursions

builtin_interfaces_cert

connext_micro_support_cert

allocator_cert

logging_cert

rclcpp_cert

threading_cert

Apex_ecu_monitor (native)

Apex_utils (native)

Requirements Architecture Unit Design V&V Conf. Reviews

Elicitation,
Safety
Concept, SW
Safety
Requirements

UML (unified
modeling
language),
FMEA

SCA (Static Code
Analysis), SW
practices outline,
coverage, FMEA

Req., arch.,
unit,
integration,
system,
performance,
fault injection
tests

Safety manual,
Restrictions,
Traceability

Apex.OS Cert

ISO 26262, SEooC, part 3, part 6, part 8 processes

© 2021 Apex.AI, Inc.

Key steps

17

1. Making APIs memory static: real-time compliance: Rewrote all non-
deterministic runtime memory allocations, blocking calls, and usage of
standard STL packages (such as threading).

2. Structural Coverage: 100% statement, branch and MC/DC coverage for all
Cert packages as mandated by ISO 26262- 6:2018 for ASIL D.  

3. FMEA: Extensive safety analysis for every public API to derive additional safety
requirements or R&R (restrictions and recommendations) for its users.  

4. Requirements traceability:

1. No formal requirements available from ROS 2 fork.

2. Wrote several hundred safety and nominal requirements and traced them

to codebase and tests using a certified requirement management tool.

© 2021 Apex.AI, Inc.

Real-time

18

Real-time gaps

Non static mem operations Standard threading

Thread priorities, scheduling,
pinning

No control
(std::thread)

Higher risk of
dead locks since

no tooling

Scheduling based on
readiness of data (executor)

Increased
thrashing

Standard containers

Runtime mem
allocation

Mem

fragmentation

Standard exceptions

Exception throw

causes mem

allocation

Handler lookup
non-deterministic
due to inheritance

ROS 2 exhibits the following gaps to enable real-time performance:

non-real-time middleware

Blocking calls/deadlocks

© 2021 Apex.AI, Inc.

Real-time

19

Real-time

static mem operations apex::threading

Blocking calls/deadlocksapex::threading
::thread

Better control
over thread
priorities,

scheduling and
pinning

Eliminated

Reliance on OS scheduler
vs executor

Reduced
thrashing

apex::containers

apex::string apex::

map/set

Standard exceptions, but

apex::malloc Process defined
to catch

exceptions
deterministically

Apex.OS addresses the following gaps to achieve real-time performance:

Apex.Middleware

apex::vector

© 2021 Apex.AI, Inc.

Apex.OS is retaining the rich ROS ecosystem

20 © 2021 Apex.AI, Inc. 20

While providing real-time and automotive grade reliability and safety

First and only cross-application
SDK certified to the highest level
of automotive safety.

Certified Apex.OS was honored
with CES Innovation Award 2021.

Apex.OS
Safety Certification

(ISO 26262 ASIL-D)

+ =

© 2021 Apex.AI, Inc. 20

Largest software development
framework for automotive,

robotics, autonomous, smart
machine applications.

© 2021 Apex.AI, Inc.

Summary: Enabling software-defined vehicles

21

1. A standardized software architecture with open APIs to enable mutually
compatible solutions ideally across many manufacturers, suppliers, and
academia.  

2. An awesome developer experience to enable developer productivity – based on
the understanding that the quality of the developer experience is directly related to
their productivity.  

3. A software architecture that scales to massive software systems.  

4. A software implementation based on modern software engineering practices.  

5. Abstraction of the complexity of all underlying hardware and software.  

6. Deterministic, real-time execution, automotive functional safety certification.  

© 2021 Apex.AI, Inc.

Outlook

22

Components:

• Eclipse Cyclone DDS

• Eclipse iceoryx

• SOME/IP

2020

Integrated in Apex.Middleware:

• Integrated with Apex.OS Cert

• Interoperable with AUTOSAR

Adaptive (ara::com and SOME/IP)

• DDS Security

• Automotive grade and supported

2021

Apex.Middleware Cert:

• Includes developer tools

• Professionally supported

• ISO 26262 certification

2022

Proof-of-Concept (PoC) Pre-production ProductionScope

© 2021 Apex.AI, Inc.

Outlook

23

AI

© 2021 Apex.AI, Inc.

The vehicle OS company.

Ⓡ

© 2021 Apex.AI, Inc.

Apex.OS - A safety-certified software
framework based on ROS 2

