A ROS2 Driver for Universal Robots

13 April 2021

Andy Zelenak PickNik Robotics zelenak@picknik.ai

Outline

- Rundown of the current state in ROS2 manipulators
- Video time!
 - Teleop, trajectory execution, compliance
- Capabilities
- Limitations
 - $\circ \qquad {\sf Jerk-limited\ trajectories}$
 - Velocity control
- Request for Beta testers
- Challenges
 - Launch file args
 - Evolving ros2_control API/ABI
- Contributors

Manipulators having ROS2 Drivers

Acutronic, 2019 (Now closed)

Hello Robot Stretch R1 mobile manipulator May demo for ROS2 Groovy

Doosan Robotics Announced today

Universal Robots 7 supported robot models Beta release today!

Supported UR Models - all of them!

As well as the UR3, UR5, UR10.

What can UR robots do in ROS2?

- For the most part, it can do the same things as the ROS1 package
- Teleoperation
- Compliance
- Streaming commands
- Trajectory execution —— Series of waypoints
- End-effector GPIO
- Force/torque sensors
- Motion speed scaling via teach pendant
 - Thanks FZI

Video time!

"A video is worth a thousand words"

Trajectory Execution

This video uses ROS2 exclusively Supervised autonomy with *Movelt Studio* Notice gripper integration

Streaming Commands - the Jeff Bezos video

This video uses ROS1 -- but it should be possible in ROS2 now Shadow Robot and HaptX Dexterous Hand at Amazon re:MARS

Alan Boyle, GeekWire

Streaming Commands - Compliance

This video uses ROS1 -- but it should be possible in ROS2 now FZI Karlsruhe

Benefits of flexible control modalities

Especially for startups and researchers, it's great to have a robot that --

- Is ROS-compatible
- Offers many control modalities
 - Streaming vs. trajectories
 - Position vs. velocity control
- Is somewhat hackable at a low level, when desired
 - Example:
 - We have a project where fast cycle time is critical
 - For a demonstration, we increased the robot acceleration limit by **4X**
 - Hardware longevity will suffer but we don't care

For people who "usually try to do unusual things"

Performance Benefits of ROS2

"Nodes" \rightarrow shared library, launched as a component in a single process

- Often called "node components"
- Less internal data transfer
- Decreased latency

Improved security

• Tunable DDS middleware

Improved communication between nodes

- Tunable DDS middleware
- Deterministic launching
 - Node A needs to wait on Node B

Request for Beta testers

https://github.com/PickNikRobotics/Universal Robots ROS2 Driver

Limitations of the Beta release

- Trajectories cannot be executed in velocity mode yet
 - Easy to add, coming soon
- Yes acceleration-limited trajectories, no jerk-limited trajectories
 - Usually required by large industrial robots
 - Two promising new open-source packages have been released
 - <u>TopiCo</u>
 - Ruckig
 - Should be integrated with Movelt in ~6 mos.
- Cannot run the kinematics calibration routine

Development challenges

- Continuously evolving ros2_control ABI/API
- Found it difficult to add arguments to launch files
 - Example from ROS1:

<arg name="robot_ip" value="192.168.1.14"/>

ROS2 launch file arguments

• Declare arguments

```
declared_arguments = []
declared_arguments.append(
    DeclareLaunchArgument(
        "robot_ip",
        description="IP address by which the robot can be reached.",
    )
    )
```

• Initialize arguments

```
robot ip = LaunchConfiguration("robot ip")
```

• Use the arguments

Contributors

• PickNik Robotics

• Denis Stogl, Lovro Ivanov, Abi Sivaraman, Andy Zelenak, Nathan Brooks

• FZI Forschungszentrum Informatik

• Marvin Besselmann

• Delft University of Technology

• Gijs van der Hoorn

• Universal Robots

• Rune Søe-Knudsen

