Movelt 2

The developer experience on Humble and beyond

June 10, 2022

Nathan Brooks CTO, PickNik Robotics

nathan@picknik.ai

Outline

- What's new in Movelt?
- What's on the roadmap?
- What's Movelt Studio?

What's new in Humble for Movelt users?

Revamped tutorials!

Revamped and new <u>moveit2_tutorials.picknik.ai</u> content is now targeted for specific questions

- Tutorials walk you through creating your first project with Movelt
- How-To Guides answers the question "How to do X with Movelt?"
- Concepts discusses the design of Movelt

New Getting Started With Movelt video series

- Tutorial walkthroughs
- Learn how to contribute to Movelt

Launch file best practices and tools

moveit_configs_utils simplifies writing your launch files

```
+95 −398
```

```
- from ament index python.packages import get package share directory
           - def load file(package name, file path):
                 package_path = get_package_share_directory(package_name)
10
                 absolute_file_path = os.path.join(package_path, file_path)
11
12
                 try:
13
                     with open(absolute_file_path, "r") as file:
14
                         return file.read()
15
                 except EnvironmentError: # parent of IDError, OSError 'and' WindowsError where available
16
                     return None
17
18
19
           - def load_yaml(package_name, file_path):
29
                 package_path = get_package_share_directory(package_name)
21
                 absolute_file_path = os.path.join(package_path, file_path)
22
23
                 try:
24
                     with open(absolute_file_path, "r") as file:
25
                         return yaml.safe_load(file)
26
                 except EnvironmentError: # parent of IOError, OSError *and* WindowsError where available
27
                     return None
        6 + from moveit configs utils import MoveItConfigsBuilder
```

```
# Bet URDF and SRDF
                 robot_description_config = load_file(
                     "moveit resources panda description", "urdf/panda.urdf"
                robot_description = {"robot_description": robot_description_config}
36.
                robot_description_semantic_config = load_file(
                     "moveit_resources_panda_moveit_config", "config/panda.srdf"
39
                robot description semantic = (
                    "robot_description_semantic": robot_description_semantic_config
42
43
                kinematics yawl - load yaml(
                     "moveit_resources_pands_moveit_config", "config/kinematics.yaml"
                # Planning Functionality
49
                ompl planning pipeline config = {
                    "move_group": {
51
                        "planning plugin": "ompl interface/GMPLPlanner",
52
                        "request_adapters": """default_planner_request_adapters/AddTimeOptimalPara
52
                        "start state max bounds error": 0.1,
                cept planning yamt = load yami(
                     "moveit resources pands moveit config", "config/ompl planning.yaml"
                 moveit_config = (
                    MoveItConfigsSuilder("moveit resources panda")
                     .planning pipelines(pipelines=["cmpl"])
                    .robot_description(file_path="config/panda.urdf.xacro")
      14 .
                     .trajectory_execution(file_path="config/gripper_moveit_controllers.yaml")
      15 .
                     .to movest_config+()
```


Launch file best practices and tools

moveit_param_builder simplifies loading your launch parameters

- Avoid complex launch_ros.substitutions
- Stores yaml, xacro or general file parameters into internal container
- Handles standalone parameters with one value
- Supports path handling for argument passing when needed (e.g. .rviz file configuration)

Hybrid planning

New feature with a new Concept page!

	Global Planner	Local Planner
Planning Problem	 Solve global solution trajectory Optimize trajectory path (continuously) 	 Steer through global trajectory while adapting to local conditions Optimize solution locally Compute controller commands
Properties	 Complete No restricted computation time Not real-time safe Not necessarily deterministic 	 Can get stuck in local minima Low computation time (fast) Real-time safe Deterministic
Examples	 OMPL planner STOMP TrajOpt Cartesian motion planner Pilz Industrial Motion Planner 	 IK solver, Jacobian Potential field-based planner Trajectory optimization algorithm Model Predictive Control (MPC) Sensor-based Optimal Control

Planar joint modeling

New feature and new Example!

Out of box Docker image available via our ROS World 2021 Workshop with Hello Robot!

Ruckig trajectory jerk smoothing

New feature with a new Example!

 \swarrow one-line change in a single config file \swarrow

Single-thread Benchmark on Intel i7-8700K CPU @ 3.70GHz (lower is better)

PILZ Planner

ROS 2 port and an Example page

MSA (quite nearly)

Try out the <u>feature branch!</u>

More and more ros2_control arm drivers

Official (supported by robot manufacturer):

- Universal Robots
- Franka Emika research robots

Unofficial (from the community):

- KUKA industrial robots (KUKA Robot Sensor Interface (RSI))
- KUKA IIWA (KUKA Fast Robot Interface (FRI))
- KUKA LBR and IIWA (KUKA Fast Robot Interface (FRI))
- ABB EGM interface
- Mitsubishi RV1A
- <u>Elephant Robotics MyCobot</u> <--- Lightning 4 4 talk "Your robot on ROS 2: Easier than you might think"

Mobile manipulators:

Hello Robot - Stretch (for simple simulation with Movelt2)

ROS World 2021 Video: Making a robot ROS 2 powered - a case study using the UR manipulators

Movelt Roadmap

It's going to be a busy summer

Better Cartesian planning

Constrained OMPL planning

https://github.com/ros-planning/moveit2/pull/1319

Bio IK for ROS 2

https://github.com/PickNikRobotics/bio_ik/tree/ros2

"Stay in box" constraints

2 Google Summer of Code projects!

- Python bindings
 - Peter David Fagan
- Multi-arm trajectory execution
 - Cristian Beltran-Hernandez

Movelt Roadmap

Ways to begin getting involved

Enhance Documentation

Expand and improve upon our tutorials and example code.

Answer User Questions

You probably know more than you realize, share that knowledge!

Fix Bugs

Any active and growing project inevitably has regressions that need cleanup.

Add New Features

There is plenty more to be done with our active developer base!

What's new in Movelt Studio?

Amplifying the capability and productiveness of roboticists

Movelt Studio

- Just like Movelt, it is hardware agnostic
- Just like Movelt, it is extendable via plugins

Movelt Studio SDK

Run-time SDK

- Jump start your development with a behavior tree framework built for manipulation applications
- Build behavior trees using both your custom logic and the SDK's out of box manipulation building blocks
 - Planning with Recovery
 - Execution with Recovery
 - Fine tune your system without restarting or recompiling

Movelt Studio SDK

Example 1: Inserting an object

```
behavior_type: LinearServo
  parameters:
    reference_frame: port_frame
    min_distance: 0.01 # meters
    max_distance: 0.02 # meters
    min_force: 15 # newtons
    max_force: 100 # newtons
    timeout_duration: 10 # seconds
```

Example 2: Pushing a button

```
behavior_type: LinearServo
  parameters:
    reference frame: button_frame
    min_distance: 0.01 # meters
    max_distance: 0.015 # meters
    min_force: 15 # newtons
    max_force: 40 # newtons
    timeout_duration: 3 # seconds
```


Movelt Studio Developer Platform

Web tools for use during development cycle providing advanced introspection and debugging capabilities

- Write, monitor, and inspect execution of your behavior trees
- Preview motions after changing constraints/planner
- Step through and diagnose failures in your manipulation objectives
- Remotely develop and test robot hardware
- Clear hardware faults and rewind arm trajectories

Movelt Studio Supervisor

Supervised Autonomy web tools which provide

- Situational awareness for humans making critical decisions
- Operator interface robust to high latency environments
- Shorter path to initial on-site validation with customers

Movelt Studio Supervisor

Nathan Brooks nathan@picknik.ai

Thanks!

PickNik Robotics picknik.ai Colorado, USA

@picknikrobotics