Automated ROS code and ros_control generation

YJ Lim Technical Product Manager of robotics

Abhijeet Gadkari Embedded Software Engineer

Murat Belge Consulting engineer

What MathWorks customers are telling us about ROS...

- Simulink + ROS allowed us to deploy a Level 3 autonomous vehicle in less than three months. **
 - Alan Mond, Voyage
- **By combining various toolboxes of MATLAB, it is easy to develop advanced technology-based applications that are difficult to build with ROS alone **
 - Masaru Ken Morita, Yaskawa Electric Corp.
- ... ROS looks popular for industrial automation. How can I get started."
 - Lead Mechanical Engineering Manager, Industry Equipment

Agenda

Introduction

- Automated ROS code generation
- Automated ros_control generation
- **Summary**

Introduction

Code Generator

Roles and Goals of Code Generation

Design software once, deploy to many targets

Migrate your existing tested components to new architectures while reusing existing workflows

Agenda

Introduction

Automated ROS code generation

Automated ros_control generation

Summary

Automated ROS Code Generation

Bridging ROS / ROS 2 with MATLAB and Simulink

Bridging ROS / ROS 2 with MATLAB and Simulink

C++ ROS Code Generation from MATLAB

Deploy MATLAB function as a C++ ROS code using MATLAB Coder

```
function myNode
% Copyright 2021 MathWorks Inc.
sub = rossubscriber('/point', 'geometry msgs/Point',...
    @callback,...
    'DataFormat', 'struct');
fprintf('Created %s subscriber\n', sub.TopicName);
while (1)
    fprintf("Node is alive..\n");
    pause(3);
end
end % myNode
% Subsriber callback function
function callback(~,msg)
fprintf("(X,Y,Z): (%f,%f,%f)\n",msg.X, msg.Y,msg.Z);
end
```


C++ ROS Code Generation from MATLAB

MATLAB Code

```
function myNode
% Copyright 2021 MathWorks Inc.
sub = rossubscriber('/point', 'geometry_msgs/Point',...
    @callback,...
    'DataFormat', 'struct');
fprintf('Created %s subscriber\n', sub.TopicName);
while (1)
    fprintf("Node is alive..\n");
    pause(3);
end
end % myNode
% Subsriber callback function
function callback(~,msg)
fprintf("(X,Y,Z): (%f,%f,%f)\n",msg.X, msg.Y,msg.Z);
end
```


C++ Code

```
void myNode()
  coder::ros::Subscriber sub;
  coderTimespec b timespec;
  char varargin 1[7];
  if (!isInitialized myNode) {
    myNode initialize();
  sub.matlabCodegenIsDeleted = true;
  sub.init();
  for (int i{0}; i < 6; i++) {
    varargin 1[i] = sub.TopicName[i];
  varargin 1[6] = '\x00';
  printf("Created %s subscriber\n", &varargin 1[0]);
  fflush(stdout);
  while (1) {
    printf("Node is alive..\n");
   fflush(stdout);
    if (pauseState == 0) {
      b timespec.tv sec = 3.0;
      b timespec.tv nsec = 0.0;
      coderTimeSleep(&b timespec);
```


Automated ROS Node Generation to

Local Host

Remote ROS Device

Use Case: Deploy ROS Code of Deep Learning Algorithm onto Development Machine

MATLAB/Simulink

- Host PC with highcomputation power
- Deep learning engine

ROS network

Use Case: Deploy a Standalone ROS Node to Remote Ground Robot

Use Case: Deploy a Standalone ROS Node to Remote Ground Robot

Agenda

Introduction

- Automated ROS code generation
- Automated ros_control generation
- **Summary**

Connect MATLAB and Simulink with ROS

Connect MATLAB and Simulink with ROS

Recap (ros_control architecture)

- Layered architecture
- Single process (multi-threaded)
- Determinism within node (execution)
- OEM provides up to the interfaces layer
- RobotHW transforms data:
 - From HW to ROS (ex: enc ticks → rad)
 - From ROS to HW (ex: rad → enc ticks)
- Combine RobotHW (OEM1, OEM2, ...)
- Controllers are user-facing

Example – 3D Shape Tracing

Example – Shape Tracing Controller Model

Example – 3D Shape Tracing

Video demo

Typical Applications using Shape Tracing

- Industrial Applications
 - Welding
 - Sanding
 - Painting
- Curved 3-D surfaces
 - Aircrafts
 - Ships

Agenda

- Automated ROS code generation
- Automated ros_control generation
- **Summary**

Key Takeaways

- Automated C++ ROS code and ros_control generation from MATLAB and Simulink
 - ► Incorporate ROS framework for implementation
 - Speed up the development process
 - ► Remove manual implementation errors
 - ► Go directly from algorithm prototyping to implementation
 - ► Easily incorporate Simulink controllers into ros_control framework
- Call-To-Action:
 - ► Try out the reference examples from ROS Toolbox
 - ► Reach out to us to work on real-world industrial applications

Learn More

Robotics Solutions Page

ROS Toolbox

MathWorks Robotics Solution Page

Ground Vehicles and Mobile Robotics

- Kinematic motion models for simulation
- Control and simulation of warehouse robots
- Programming of soccer robot behavior (Video)
- Simulation and programming of robot swarm (Video)
- Mapping, Localization and SLAM (See Section Below)
- Motion Planning and Path Planning (See Section Below)
- Mobile Robotics Simulation Toolbox (Video)
- · Robotics Playground (Robotics Education Video)

Manipulation

- Tools for rigid body tree dynamics and analysis
- Inverse Kinematics (Blog and GitHub Repo)
- · Inverse kinematics with spatial constraints
- · Interactive Inverse Kinematics
- Collision checking (Self-Collisions, Environment Collisions)
- Trajectory Generation (Blog, GitHub Repo)
- Safe trajectory planning (Impedance based control)
- · Pick and place workflows (Using Gazebo)

Legged Locomotion

- Modeling and simulation of walking robots (GitHub Repo)
- Pattern Generation for Walking Robots (Video)
- Linear Inverted Pendulum Model (LIPM) for humanoid walking (Video)
- Deep Reinforcement Learning for Walking Robots (Video)
- · Modeling of quadruped robot running (Files)
- · Quadruped Robot Locomotion Using DDPG Agent

Robot Modeling

- Simscape Tools for Modeling and Simulation of Physical Systems
- Simulate Manipulator Actuators and Tune Control Parameters
- Algorithm Verification Using Robot Models
- Import Robots to MATLAB from URDF Files
- . Import Robots from CAD and URDF Files

Awesome-MATLAB-Robotics GitHub Repo (LINK)

Test Robot Autonomy in Simulation

Explores MATLAB® control of the Gazebo® Simulator.

Get Started with a Real TurtleBot

Connect to a TurtleBot® using the MATLAB® ROS interface. You can use this interface to connect to a wide range of ROS-supported

Use Simulink® to control a

simulated robot running in a

Gazebo® robot simulator over ROS 2

ROS- Fusion of Radar and Lidar S 2 Data Using ROS

Perform track-level sensor fusion on recorded lidar sensor data for a driving scenario recorded on a rosbag. This example uses the same

ROS Examples (LINK)

Acknowledgement

We thank <u>Gijs van der Hoorn</u> for providing his guidance creating 'Automated ROS Control Plugin from Simulink'

Gijs van der Hoorn

YJ Lim <u>yjlim@mathworks.com</u>

Abhijeet Gadkari agadkari@mathworks.com

mbelge@mathworks.com

