ROS-I Americas

2022 Annual Meeting

The NIST Robotics Program: Agility Performance of Robotic Systems

Presenter:

William Harrison

Outline

- 1. Overview of the NIST Robotics Program
- 2. The Agility Performance of Robotics Systems Project
- 3. IEEE Standards Work
- 4. The Agile Robotics for Industrial Applications Competition
- 5. Al Webpage
- 6. Intelligent Environments

The History of Standards

"Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to."

George Washington, State of the Union Address, 1790

Article I, Section 8: "The Congress shall have the power to... fix the standard of weights and measures"

NIST at a Glance

Gaithersburg, MD

- ~ 2,900 employees
- ~ 2,600 associates and facility users
- ~ 1,600 field staff in partner organizations
- ~ 400 NIST staff serving on 1,000 national and international standards committees

Boulder, CO

What is Agility?

Identify and recover from failures automatically

Automated sensing within a fixtureless environment

 Swapping between robots of different manufacturers with minimal reprogramming time

IEEE Standards Work

Anthony Downs

 Working as part of Working and Study Groups within the IEEE Standards Association Robotics and Automation Society

- Developed the Core Ontology for Robotics and Automation (CORA), a upper level standard ontology containing general concepts and axioms of the robotics & automation domain.
 - Designed to be extended by more specific ontologies as mid level and low level ontologies, like task representation or autonomous robots
 - IEEE 1872-2015

Agile Robotics for Industrial Automation Competition (ARIAC)

• 6th year running this year (5th year as a prize competition awarding \$17,500 to top three eligible competitors)

ARIAC

- Previous themes of the competition
 - Kitting for a piston / gear assembly in a factory
 - Package preparation for drone delivery
 - Multiple robot on a single rail with kitting task
 - Gantry robot and human obstacles
 - Kitting and full assembly of a ventilator with a gantry and rail-mounted robot with human obstacles

Al for Manufacturing Robotics Web Page

Pavel Piliptchak

Goal:

To create a central hub for the AI for Manufacturing Robotics research community

Website Content:

- A Curated selection of relevant papers and datasets
- Regular posts and updates on emerging technologies, research efforts, and workshops
- Educational resources spanning AI, Robotics and Manufacturing
- Community discussions via website Slack channel

Tomorrow's Industrial Robots

How do we

- Validate them
 - Understand what they understand
- Train them
- Measure their intelligence

Measuring/Understanding a robot model

• Test case: Autoencoder perception system

Fig. 5: Autoencoder CNN architecture with occluded test input, "resize2x" depicts nearest-neighbor upsampling

Sundermeyer, Martin, et al. "Augmented autoencoders: Implicit 3d orientation learning for 6d object detection." *International Journal of Computer Vision* 128.3 (2020): 714-729.

Latent Space Geneation

Martin Sundermeyer¹ et al.

Fig. 4: Training process for the AAE; a) reconstruction target batch x of uniformly sampled SO(3) object views; b) geometric and color augmented input; c) reconstruction x after 40000 iterations

Sundermeyer, Martin, et al. "Augmented autoencoders: Implicit 3d orientation learning for 6d object detection." *International Journal of Computer Vision* 128.3 (2020): 714-729.

Codebook Pose Estimation

Abstract Validation: Latent Space Analysis

Intelligent Environment

- Using the environment to train and measure robot intelligence and agility
 - Procedural Generation
 - Reinforcement learning
 - Generative Adversarial Networks

Procedural Simulation Environments

- Typical control solutions are sensitive to environmental conditions
- Procedural Environments allow for systematic creation of infinite environments

ASYMMETRIC SELF-PLAY

Asymmetric Self-Play:

- Adversarial multi-agent environment. Two URe16 arms competing, Alice and Bob.
 - •Alice: learns to generate complex goal distributions for Bob to solve.
 - •Bob: learns to solve the goals defined by Alice.
- •There is always a solution for the trajectory of Bob to solve the goal set by Alice.
- Both agents have independent policy neural networks trained with Proximal Policy Optimization (PPO) and Alice **Behavioral Cloning**

Manufacturing environment

Hybrid Adversarial and Reinforcement Learning (RL)

Increasingly Challenging tasks and Environments

Workshop

Getting started with Reinforcement Learning for Industrial Robotics

Thank You

- My email: william.harrison@nist.gov
- Al Webpage:

https://sites.google.com/view/ai4manufacturingrobotics/

- ARIAC:
 - https://www.nist.gov/ariac
 - https://www.github.com/usnistgov/ariac

- ARIAC Contacts:
 - Project Co-Leader & ARIAC and Standards Lead: <u>anthony.downs@nist.gov</u>
 - ARIAC Lead Developer: <u>zeid.kootbally@nist.gov</u>

The Far Future of ARIAC: Open World

 Free open world environment with system goals and metrics

- Builders create both virtual hardware and virtual software for their robotic systems.
 - This welcomes robot designers and system creators to push the boundaries of their imaginations.

- Single arm single rail
 - Kitting for assembly 2017
 - Kitting for order fulfillment 2018
- Dual arm single rail 2019
- Dual arm dual rail 2020

The Future of ARIAC: Assembly & Agile Disaster Response

- Assembly
 - Provides a real-world robotic function common in industry

- System Changeover: Agile Disaster response manufacturing
 - Process can change over to a related task to support global and national needs for public health and safety

NOVEL TEST GENERATION USING ASYMMETRIC SELF-PLAY

- •Problem statement: generate novel complex goals in manufacturing tasks (pick and place, assembly, ...), for testing agility of industrial robots.
- •Proposal: leverage reinforcement learning research on asymmetric self-play for robot manipulation. This research was originally done by OpenAl [1]. Manufacturing environments will be added to create the new goal distributions for industrial testing applications.
- Asymmetric Self-Play:
 - •Adversarial multi-agent environment. Two URe16 arms competing, Alice and Bob.
 - •Alice: learns to generate complex goal distributions for Bob to solve.
 - •Bob: learns to solve the goals defined by Alice.
 - •There is always a solution for the trajectory of Bob to solve the goal set by Alice.
 - Both agents have independent policy neural networks trained with Proximal Policy Optimization (PPO) and Alice Behavioral Cloning (Bob will copy some of Alice's trajectories to its experience replay buffer).
 - OpenAl proved to zero-shot generalize to other holdout tasks such as pushing, pick and place or stacking.
- •Tools used for distributed RL training:
 - •RIlib framework from the Ray library (Anyscale) RLIPb

AWS EC2 instances

[1] O. OpenAl κ.ά., 'Asymmetric self-play for automatic goal discovery in robotic manipulation'. arXiv, 2021

Solving goal in block environment [1]

Manufacturing environment

