

ROS-Industrial Consortium Americas 2021 Annual Meeting

ROS-Industrial Consortium Asia Pacific Updates and Industrial Grade Easy Robotic Vision and Manipulation Highlights

Presenters:

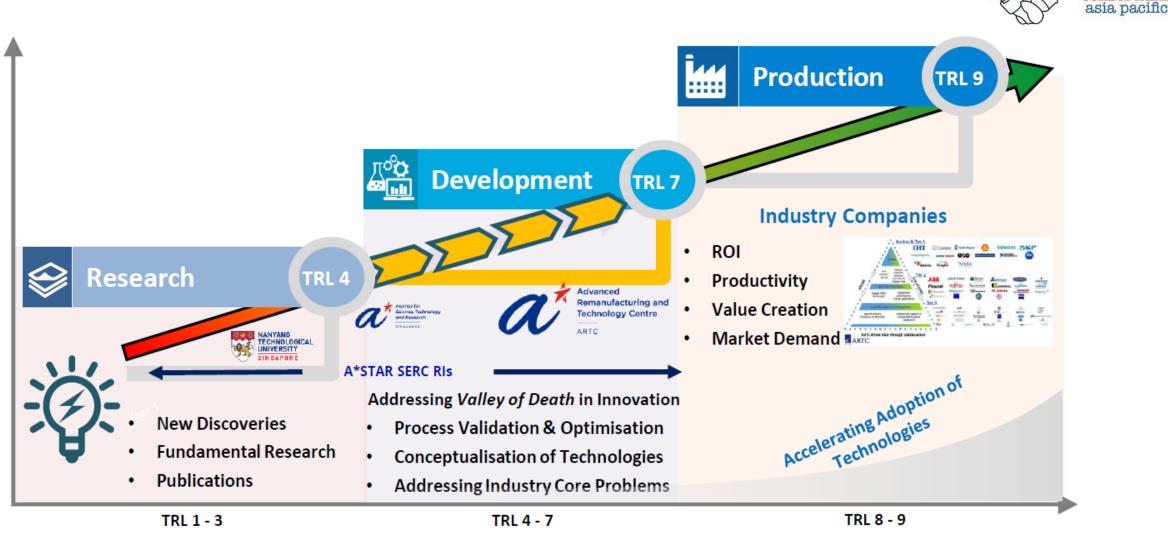
Darryl Lee ROS-I AP Consortium Manager

Glenn Tan ROS-I AP Development Engineer

The Advanced Remanufacturing Technology Centre (ARTC)

Leading Public-Private Partnership Research Centre in Asia

- Bridging the gap between Research and Industry
- Focus in Developing Advanced Manufacturing and Remanufacturing Capabilities
- Co-Create and Value Capture with Industry through the Implementation of Solutions



Bridging the Valley of Death

Managed by

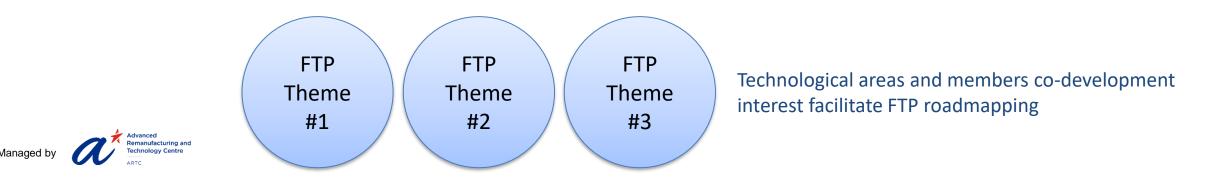
Technology Readiness Level (TRL) is a scale for determining the maturity of a technology

ARTC was created for a step change model to drive in Public Private Partnership for translational R&D with industry

consortium

Focused Technical Projects (FTPs)

Focused Technical Projects – Driving Members' Needs



Focused Technical Projects (FTP) Motivation:

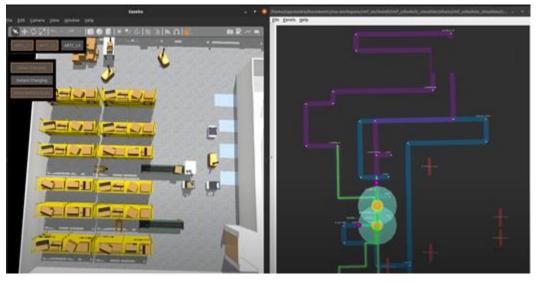
- Addressing common Member needs in the spirit of co-development, creating new ROS-based platform technology and enablers (pre-competitive)
- Lower the required investment via cost sharing between members
- Solutions developed will be contributed back to the Open Source community (either directly, or after 2 year competitive advantage), which helps to:
 - 1) Allow Members to steer direction of de-facto standardization of ROS (components, robots, interfacing et c)
 - 2) Accelerates organic growth of ROS platform development enables faster creation of further Open Source capabilities made by others that can now be leveraged back by Members free of charge to create future solutions
 - 3) Enables specific ROS platform components to achieve industry-grade quality faster, required for adoption

FTP Roadmaps Generation:

- Elicit common problem statements and needs from Members to facilitate FTP roadmap creation
- Craft out workstreams of further FTP projects for co-development between members

Upcoming FTP – Interoperable Robotics with RMF

Motivation / Objective


Motivation: Take the success of Robotic Middleware Framework (RMF) developed for Healthcare to address additional areas and move towards a solution that is ready to be commercialized for manufacturing industry. By deploying platform technologies with industry partners, fully autonomous operations using robots that work seamlessly together with scalable and flexible solutions are made possible.

Objective:

- Expending RMF with generic sensor interfacing
- Enhancing capabilities in RMF for manufacturing/warehousing use cases with simulation demonstration
- Physical testbedding of RMF for Members access and interoperability testing

Status:

– Target to launch in mid of 2021

ROS 2 Training Update

ROS 2 Training on EPD and EMD

A 3-day training workshop was curated and delivered to ROS-I AP consortium members on ROS 2 basics and the applications of EPD and EMD. This training workshop will be open to public in 3rd quarter of 2021

Easy_Perception_Depolyment Object detection, classification, tracking and accurate positioning module

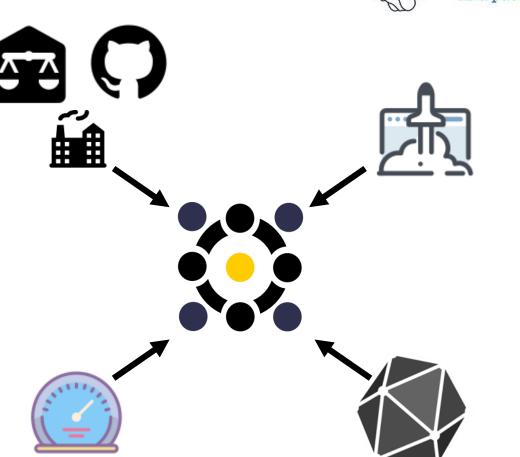
Easy_Manipulation_Depolyment Flexible and fast grasping library for multiple types of end effectors with integrated collision avoidance capability

 Conducted ROS 2 basics, EPD & EMD training for 13 participants from 7 companies, provided participants with in depth technical explanation of the working principles for each of the packages

asia pacific

- Created a valuable opportunity to acquire feedback on features which our members faced in deploying their robotic solutions
- Participants identified potential use cases include mobile manipulators, depalletizing and easy pick and place configuration set up

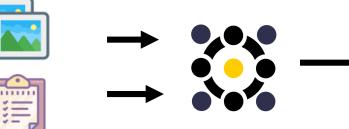
Easy Perception Deployment


A **ROS2** package that accelerates the <u>training</u> and <u>deployment</u> of customtrained Computer Vision model for industries.

https://github.com/ros-industrial/easy_perception_deployment

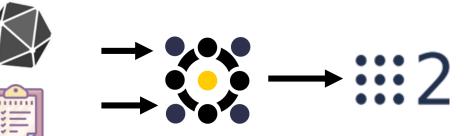
What is EPD - Features

- **<u>Permissively Licensed</u>** and Open Source.
- <u>**Reduces time**</u> needed in training and deploying robotic vision systems by use of **transfer-learning**.
- Reduces knowledge barrier with the use of <u>GUI</u> to guide users. Targeted at users with no programming background.
- Relies on open-standard <u>ONNX</u> AI models. Removes overreliance on any one given Machine Learning library (Eg. Tensorflow, PyTorch, MXNet).



industrial consortium asia pacific

Model Training

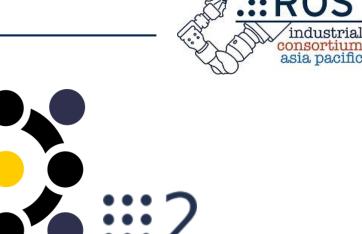


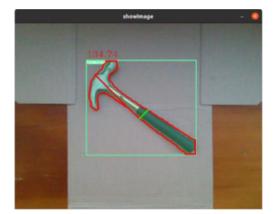
Model Deployment

.onnx trained AI model

.txt Class Labels List

A ROS2 package that runs inference using the model and classifies images provided by a video stream from a camera.




Built-In Use Case Configurations

EPD runs a deep-learning model as a ROS2 inference engine.

It outputs the following object information in the form of **custom ROS2 messages** that caters to common Computer Vision demands.

- 1. What is the object? (Object Classification)
- 2. Where is the object? (Object Localization)

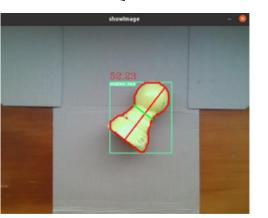
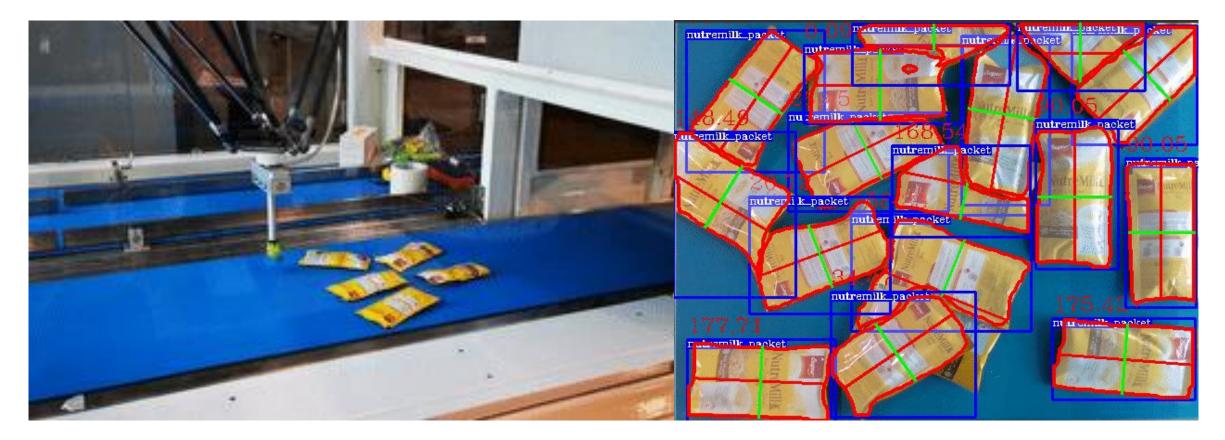


Image courtesy of icons8.com and onnx.com

Customizable Speed-Accuracy Tradeoffs

EPD can be configured to run at <u>**3**</u> different Precision Levels.

Precision Level	Inputs	Outputs	
1	Model: squeeznet Label List:Imagenet Classes	Determines presence and identity of objects in the scene,	object_names: - 'oxygen mask '
2	Model: FasterRCNN Label List: CoCo Dataset classes	Determines presence and identity of objects in the scene, as well as the bounding boxes around the identified object	person person person person person person person person person
3	Model : maskRCNN Label List : CoCo Dataset classes	Determines presence and identity of objects in the scene, as well as the bounding boxes around the identified object as well as the segmented masks of the scene	


nufacturing and

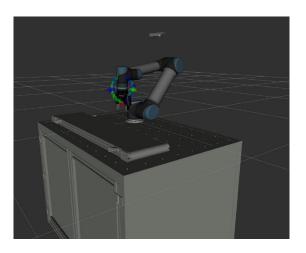
Manageo

Tested for Industrial Use

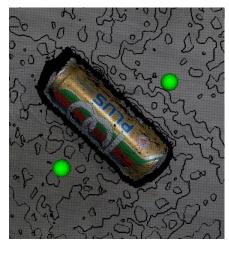
EPD Configuration: ROS2 Foxy, Precision Level 3, Object Localization, operating at 2 FPS **Use Case Description**: Industrial Conveyor Tracking and Automated Picking.

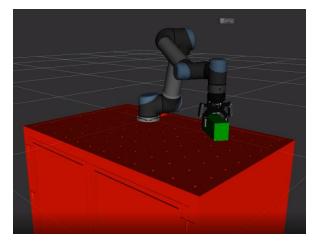
Easy Manipulation Deployment

Easy Manipulation Deployment


An easy to use ROS2 manipulation package that uses the easy_perception_deployment output to provide a **modular** and **configurable** manipulation pipeline for pick and place tasks

https://github.com/ros-industrial/easy_manipulation_deployment


Easy Manipulation Deployment Features


Workcell Builder

Quick and Intuitive GUI for users to create a representation of the elements in a pick and place workcell

Grasp Planner

Modular and Flexible Grasp Planner that generates an end effector specific pose from the from a perception output

Grasp Execution

Robust Path planning process to navigate robot to the object for grasp, accounting for dynamic safety

EMD Workcell Builder

Create New Scene							
Custom environmental Objects							
table							
Add Object							
Load Existing Object							
Delete							
✓ Include Robot							
Robot							
Robot Brand:	Ko	universal_robot					
Robot Model:		ur5					
	Edit F	Robot					
Remove Robot		Robot Loaded!					
✓ Include End Effector							
End Effector							
End effector Brand:		robotiq_85_gripper					
End effector Model:		robotiq_85					
	Edit End	Effector					
Remove End Effecto	r	Robot and EE connected!					
Object	Parent	Object	Parent Link				
table	world		world				
Scene Name: new_scene							
Errors							
Ok			Exit				
UK			LAIL				

industrial asia pacific

Problem Statement:

For new users to ROS and to robotic workcell generation, it is **knowledge and time intensive** to generate the required files (URDFs, description packages) to prepare an environment that represents a workcell for robot manipulation

Solution:

A **simple to use Graphical User Interface** that allows the user to determine and create objects required in a robotic workcell, which generates a file that provides an easy to understand representation of the workspace. Relevant files and folders will then be generated and organized to provide an immediate simulation model for path planning.

EMD Grasp Planner

Jacquard Grasping Dataset

Cornell Grasping Dataset

Problem Statement:

Most grasp planners are Machine Learning based, which means that **a completely different training dataset is needed if a specific end effector is required**, leading to difficulties in implementing new models for new grippers.

Solution:

An **algorithmic, depth based Grasp Planner** that uses point cloud information to generate valid grasp poses, accounting for finger collision and stability (Assuming objects with centre of mass at the object centroid)

A **flexible representation of an end effector** to allow for extension of capabilities to other end effectors with minimal effort needed from the user

Images referenced from:

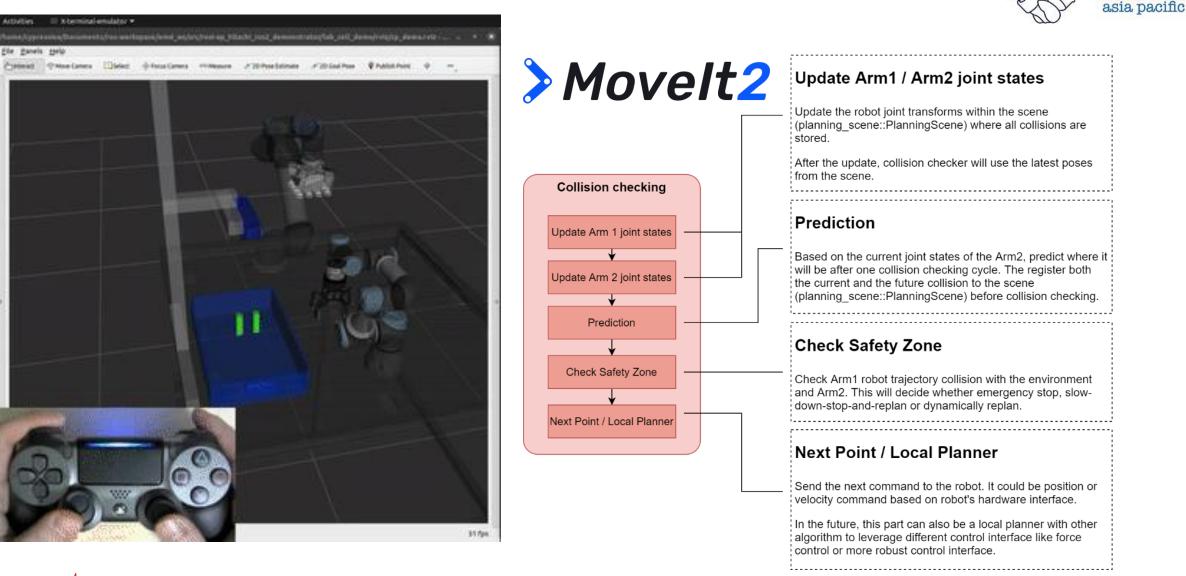
https://www.researchgate.net/figure/On-Cornell-Grasping-Dataset-each-object-has-multiple-labelled-grasps-These-grasps-are_fig5_300409289 https://jacquard.liris.cnrs.fr/

EMD Grasp Planner – Flexibility on the Fly

3 Finger gripper Image referenced from::<u>https://robotiq.com/products/3-finger-adaptive-robot-gripper</u> Single Suction Cup Image referenced from::<u>https://www.therobotreport.com/vacuum-grippers-robotiq-compatible-omron-cobots/</u> Suction array Image referenced from::<u>https://www.universal-robots.com/plus/urplus-components/handling-grippers/epick/</u> 2Finger gripper Image referenced from::<u>https://robotiq.com/products/2f85-140-adaptive-robot-gripper</u>

EMD Grasp Planner – Ease of Configuration

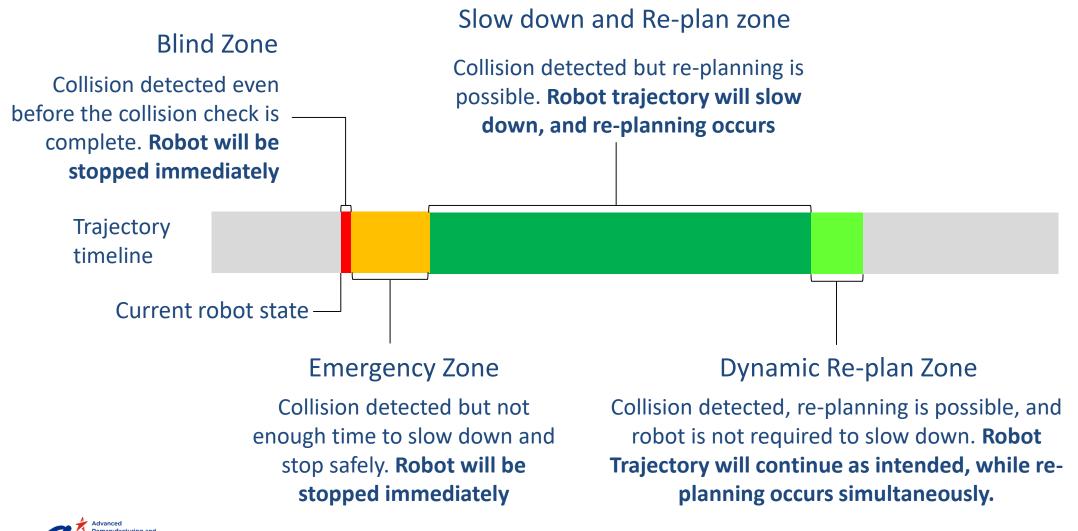
end_effectors: end_effector_names: [robotiq_2f] robotiq_2f: type: finger num_fingers_side_1: 4 num_fingers_side_2: 6 distance_between_fingers_1: 0.06 distance_between_fingers_2: 0.05 finger_thickness: 0.01 gripper_stroke: 0.15 grasp_planning_params: grasp_plane_dist_limit: 0.007 voxel_size: 0.01 grasp_rank_weight_1: 1.5 grasp_rank_weight_2: 1.0 world_x_angle_threshold: 0.5 world_y_angle_threshold: 0.5 world_z_angle_threshold: 0.25


end_effectors: end_effector_names: [suction_cup] suction_cup: type: suction num_cups_length: 2 num_cups_breadth: 2 dist_between_cups_length: 0.06 dist_between_cups_breadth: 0.03 cup_radius: 0.01 cup_height: 0.01 grasp_planning_params: num_sample_along_axis: 3 search_resolution: 0.01 search angle resolution: 4 weights: curvature: 1.0 grasp_distance_to_center: 1.0 number_contact_points: 1.0

Easy to understand configuration file that is highly customizable depending on the task provided

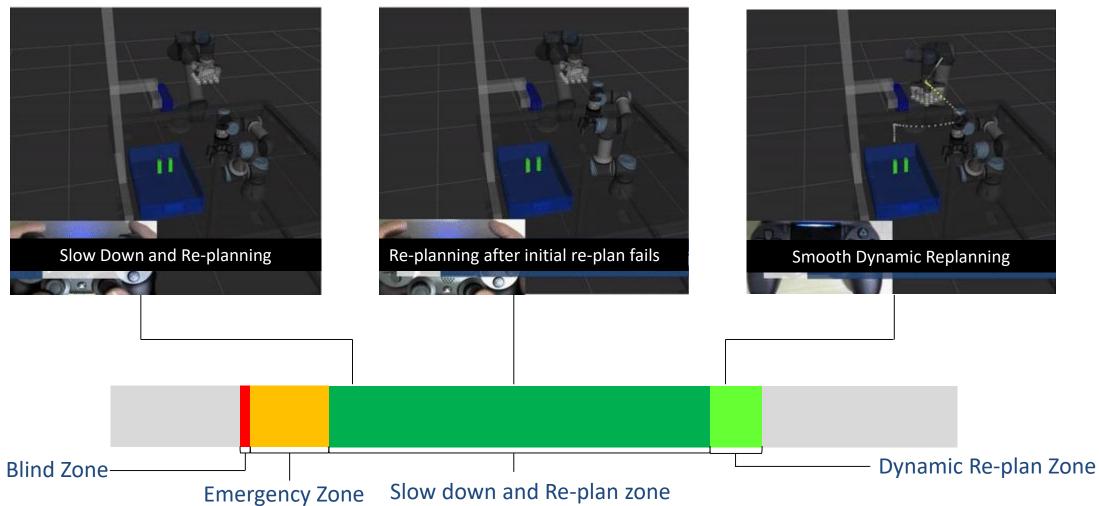
Currently supports finger and suction cup end effectors

EMD Grasp Execution – Dynamic Collision Checking



consortium

EMD Grasp Execution – Dynamic Safety Zones


Managed

EMD Grasp Execution – Dynamic Safety Zones

Managed by Advanced Remanufacturing a Technology Centre

Contact Us!

Bey Hao Yun (Gary)

Research Engineer ARTC, ROS-Industrial Consortium Asia Pacific **Email**: <u>Bey_Hao_Yun@artc.a-star.edu.sg</u> **GitHub**: cardboardcode

Glenn Tan

Research Engineer ARTC, ROS-Industrial Consortium Asia Pacific **Email**: <u>glenn_tan@artc.a-star.edu.sg</u> **GitHub**: tanjpg

© 2021 Advanced Remanufacturing and Technology Centre / ROS-Industrial Consortium Asia Pacific

Thank you!

