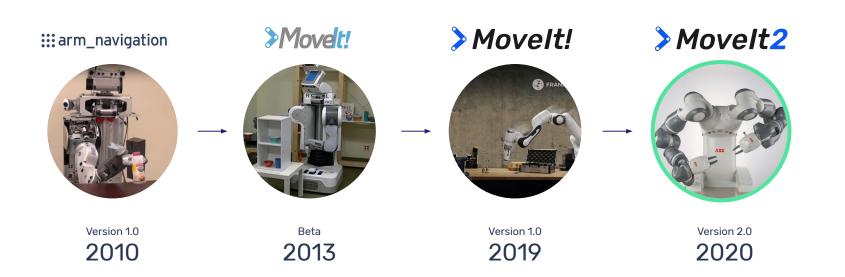

Movelt for ROS2 - Update

ROS-I Community Meeting - June 2020


Henning Kayser, MS

Roboticist, PickNik Robotics **(**) henningkayser

Movelt: Evolution of a Motion Planning Platform

Movelt Capabilities

- Motion Planning
 - Generate high-degree of freedom trajectories through cluttered environments and avoid local minimums
- Manipulation
 - \circ $\,$ Analyze and interact with your environment with grasp generation
- Inverse Kinematics
 - \circ $\,$ Solve for joint positions for a given pose, even in over-actuated arms
- Control
 - Execute time-parameterized joint trajectories to low level hardware controllers through common interfaces
- 3D Perception
 - \circ $\,$ Connect to depth sensors and point clouds with Octomaps $\,$
- Collision Checking
 - Avoid obstacles using geometric primitives, meshes, or point clouds

A Feature-Rich Ecosystem

 Global Planners OMPL SBPL TrajOpt STOMP CHOMP 	 Cartesian Planners RobotState Descartes JogArm PilzMotion 	Inverse Kinematics • KDL • IKFast • TracIK • LMA • BioIK
 Grasping Libraries Movelt Grasps Grasp Pose Detection (GPD) Intel OpenVino GPD 	 Collision Checking Fast Collision Library (FCL) Bullet 	 Perception / Octomap Depth Images Point Clouds

Why ROS2 vs ROS1?

- Realtime capabilities now available
- Designed for production same support for R&D
- Multi-platform: Linux, Windows, macOS

Milestone 1	Milestone 2	N
Straight Port to ROS 2	Realtime Support	
Fully migrate existing Movelt packages to ROS 2	Reactive, closed-loop control to sensor input	L
Wrap up Acutronic's work porting core Movelt functionality	Visual servoing, octomap updates	
Leverage ROS 2:	Preempt motion if new collision detected	L
Build system (ament), middleware, logging, parameters	Seperate global and local planner (hybrid planning)	
Cleanup Movelt 2 codebase	Global planner (full collision checking): 30hz	
VOIL	Local planner (IK-based, field-based): 300hz	C
YOU	Zero-memory copy integration to controllers (ros_control)	
HERE	Tighter integration to ros_control	
	Integrate pilz_industrial_motion	
	Movelt Survey Results	N
	91% most excited about ROS 2 realtime control	4
	55% reactive planning and closed loop control	
	48% better integration with lower level realtime control	
	48% planning with dynamics	
Future Milestones	20 5055 64 19	_
Determinism	Improved Interfaces / State Machines	
Out of box / default planners return reliable paths	Deprecate the Pick and Place pipeline	P

Fully support the Movelt Task Constructor

Similar to MoveGroup but without middleware

First class support of state machines

Non-ROS C++ API

Tune or replace OMPL, BIT*

Further optimize / smooth paths

Default use TOTG, TOPP time parameterization

Use post-processing optimization (STOMP, TrajOpt)

Fully featured Cartesian Planner

Like Descartes but better and fully integrated

Force-torque control

Milestone 3

Fully Leverage ROS 2

Lifecycle management of Movelt nodes Deterministic startup, reset, & shutdown sequences Leverage ROS2 component nodes Ability to run Movelt as single or multi-process Replace pluginlib with components Cleanup API More generic and standalone interfaces

Movelt Survey Results 47% excited about component nodes

Machine Learning

Neural-network based motion planning - new plugins General near-optimal heuristics for path planning e.g. MPNet

Roadmap Development

Update

- Migration Progress: ~85.5% 53 of 62 total targets ported
 - We're in last phase of Milestone 1

(see progress at https://github.com/ros-planning/moveit2/projects/4)

- Full plan/execution pipeline supported via MoveltCpp
- GSoC-project: JogArm port and improvements
- Preparing Foxy 2.1 Beta release for July 2020
- Milestones 1-3 are supported by ROSin

(see https://www.rosin-project.eu/ftp/moveit-realtime-control-and-ros2-migration)

• Contributors from Intel and OSRF

Google Summer of Code

Movelt 2 & Realtime

Why care about realtime motion planning?

Realtime-safety is required for online robot manipulations:

- Complex interactions with environment with forces, torques
- Dragging, pushing, smoothing, wiping, scraping
- Enables:
 - Reactive Closed-loop control
 - High rate joint command streaming (e.g. >1 kHz)
 - Low latency and reliable sensor->control pipeline

Goal: Use ROS 2 real-time features for robust and dynamic motions

- Feature 1: Adaptive & Reactive Closed-loop control
- Feature 2: Dynamic trajectory execution using hybrid planning
- Feature 3: Zero-memory copy integration with ROS controllers

Goal: Execute simple motions based on dynamic goal or path constraints

PICK**NIK**

Examples:

- Vision-based: Picking a detected item off a moving conveyor belt
- Force-based: Pulling a lever, tighten up a screw

Possible approach:

• Compute JogArm position control based on vision/force input

Problem: Only works locally, gets stuck in local minima

Problem: Only works locally, gets stuck in local minima

Proposal: Use hybrid planning to always include global solution (*Feature 2*)

Proposed: Hybrid Planning

- Simultaneously plan globally and locally
- Plan at different speeds (separate threads)
 - Global planner (full collision checking): ~30Hz
 - Local Planner (IK-based, field-based): >300Hz
- Support force-based planning

Example Applications:

- Human-robot collaboration
- Painting a wall
- Filling a dishwasher
- Balancing a tray while placing on table

Global Planning

i.e. Sampling based

- Pros:
 - Plan around complex obstacles
 - Avoid getting stuck in local minimum
 - Complete: will find solution if exists
- Cons:
 - Slower computation time
 - Not realtime
 - Not deterministic

Local Planning

i.e. Jacobian based

- Pros:
 - Fast / Reactive
 - Deterministic
 - $\circ \quad \text{Well suited for visual servoing} \\$
- Cons:
 - Gets stuck in local minimum
 - Fewer collision safety guarantees

Goal: Execute adaptive and reactive motions using global/local planning

PICK**NIK**

Adaptive Motion - Drawing on a chalkboard

- Global planner defines the motion required for drawing the letters
- Local planner follows motion while controlling for force, smoothness, etc..

Reactive Motion - Steering around a new collision object in the scene

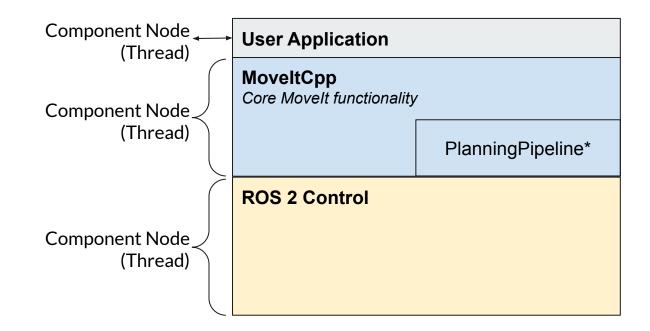
- Global planner used for fixing invalidated trajectories
- Local planner allows "keeping clear" from objects using field-based distance minimization

KNIK

Proposal:

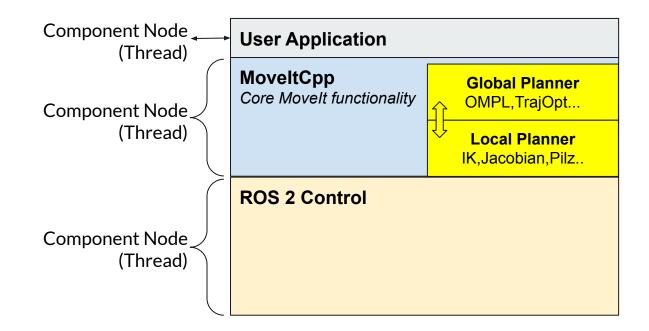
- Implement zero-memory copying with ROS controllers (*Feature 3*)
- Composable nodes (*Milestone 3 Fully Leverage ROS 2*)

Improving Movelt 1 with MoveltCpp


- Direct access to core Movelt components
- Support for multiple planning pipelines
- Support for running multiple robots
 - More flexible configuration

Old Implementation			New Implementation			
User Application						
Mov	veGroupInterface		г			
		ROS 1 Actionlib (non-realtime)		Us	er Application	
MoveGroup Core Movelt functionality			MoveltCpp Core Movelt functionality			
		PlanningPipeline				PlanningPipeline*
		ROS 1 Actionlib (non-realtime)				ROS 1 Actionlib (non-realtime)
ROS Control			RO	S Control		
	Non-Realtime ROS Interface				Non-Realtime ROS Interface	
Realtime Hardware Abstraction Layer				Realtime Hardware Abstraction Layer		

Movelt 2 Architecture


• Leverage ROS2 component nodes for better performance (Milestone 3)

Movelt 2 Architecture

• Hybrid motion planning

Getting Involved

Open Discussions

7 PICKNIK

- Launch configuration and node lifecycle management
- Best practices for parameter declaration, lookup and sharing
- Movelt ROS1 legacy support (bridges) and migration guide
- Branch/repo syncs and release strategies
- Support for dynamic robot model description
- Composable node architecture and component interfaces
- Enhanced ros2_control integration
- Native support for state machine integration
- MTC-enabled pick&place pipeline

Get Involved

Get Involved

https://github.com/ros-planning/moveit2

Many approaches:

- Adding New Features
- Helping with Movelt 2 Port
- Financial contributions via code sprints and grants
- Enhancing Documentation
- Reporting & Fixing Bugs

Get Involved

Upcoming Events

More event info: moveit.ros.org

Thanks!

PickNik Robotics picknik.ai Boulder, Colorado 80302

Henning Kayser henningkayser@picknik.ai