ROS-Industrial Consortium Asia Pacific Updates

ROS Industrial America 2022 Annual Meeting

Darryl Lee ROS-Industrial Asia Pacific Consortium Manager 09 June 2022

ROS Industrial Asia Pacific – Part of a Global Consortium

Advanced Remanufacturing Technology Centre (ARTC)

EPD & EMD updates

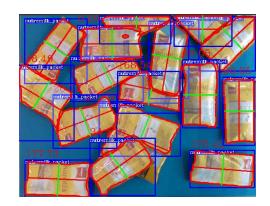
Easy Perception Deployment (EPD)

A ROS 2 package that provides object vision capabilities that is easy to configure and deploy, with the support of state-of-the-art machine learning algorithms

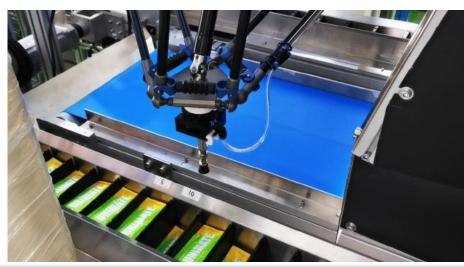
EPD

Key Features

Fast object detection, segmentation, localization, measurement and tracking


Recent Updates

- Dockerized of Exporter Environment for accelerated model training
- Added toolset of bash scripts options for command line-users
- Verified EPD to have good compatibility with Nvidia GPUs (RTX 5000, GTX 1060 and Quadro M1200)


Download

Industrial Use Case: Quick Sachet Picking

Problem Statement

The health supplement company has challenges on a manpower crunch and is keen to automate the sorting and packing of its powder sachets

The Solution

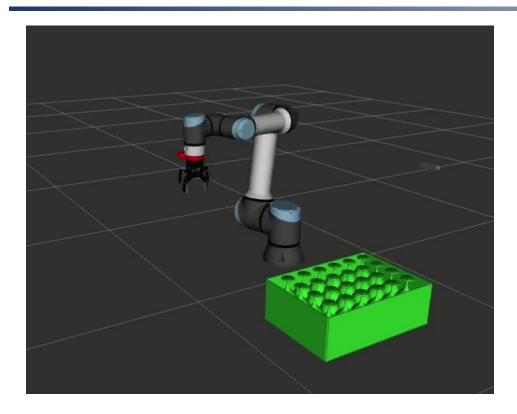
ROS-Industrial integrates EPD with commercially available industrial equipment (Camera/IPC/Delta Robot) to automate the sachet picking process

The Challenges

This is the first industry use case for EPD. Hence, efforts are required to resolve emergence bugs such as accurate detections, orientations, etc **Project Significance**

- EPD utilises Open Standard ONNX AI, which removes overreliance on particular ML algorithms. Using ROS will allow the client to scale in future without lock-ins on the hardware
- Fully automate its tedious operations of sorting and packing sachets reducing the manpower needed from 16 to 2
- Target to achieve a Cycle time of 0.8 Sec pick per sachet

Easy Manipulation Deployment (EMD)

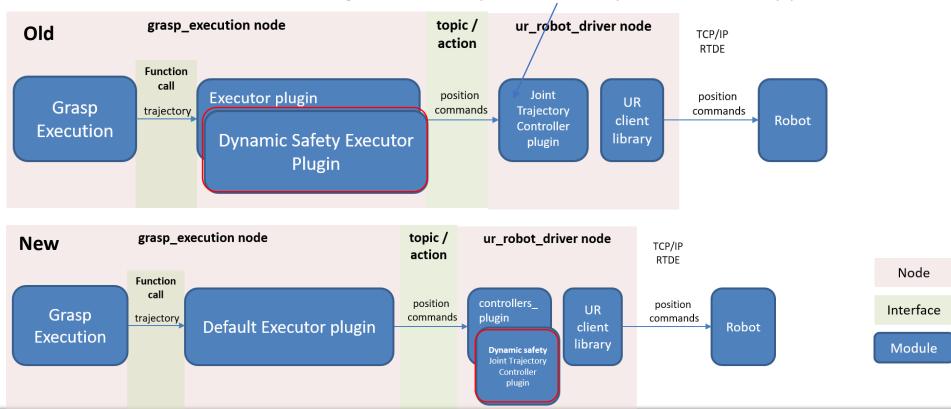

An easy-to-use ROS 2 manipulation package that provides a fast and flexible pipeline for pick and place tasks that can support a variety of grippers

- Key Features
 - Workcell Builder, Grasp Planner and Grasp Execution
- Recent Updates
 - Waypoint file loading
 - Converted the Dynamics Safety from Grasp Execution plugin to Controller plugin
 - Tested various collision elements with Dynamics Safety

EMD Grasp Execution Improvements

- For high mix pick and place, there are situations requiring object-specific trajectories depending on the required place position
- Developed a waypoint file loading method for EMD grasp execution to easily configure and load trajectory specific tasks depending on the grasped object.
 - Useful in Workcell areas that require navigation in tight spaces
 - Helps to reduce undefined movement of manipulator during execution
- JSON format based configuration file provides easy to understand trajectory definition that can be configured and tweaked during hardware testing

```
"actions" : ["pick glass", "place glass", "flip glass", "place glass upright"],
```




```
"pick_glass" : {
    "action_type" : "move",
    "frame_id" : "world",
    "position":{
        "x": -0.03,
        "y": 0.8,
        "z": 0.508125
    },
    "orientation":{
        "x": -0.999999,
        "y": 0.000398986,
        "z": -0.000398903,
        "w": 0.00119512
    }
```

EMD Dynamic Safety Improvements

Dynamic Safety plugin loading type

- Changing of Plugin from a Grasp Executor Interface Plugin to a ROS2 Controller Plugin
- Easier interface in switching between dynamic safety and normal application.

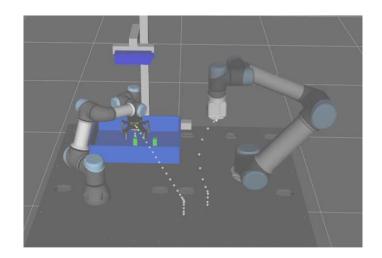
EMD Dynamic Safety Improvements

Easy migration from standard MoveIt! implementation to dynamic safety.

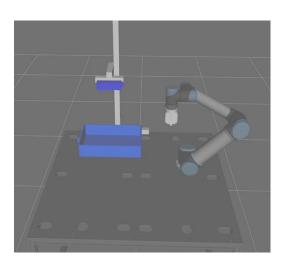
Standard Movelt! controller_manager parameters

```
controller manager:
 ros parameters:
   update rate: 500 # Hz
   joint state broadcaster:
     type: joint state broadcaster/JointStateBroadcaster
    pos_joint_traj_controller:
      type: joint trajectory controller/JointTrajectoryController
pos joint traj controller:
 ros__parameters:
   joints:
     - ur3e shoulder pan joint
     - ur3e shoulder lift joint
     - ur3e_elbow_joint
     - ur3e wrist 1 joint
     - ur3e wrist 2 joint
     - ur3e wrist 3 joint
   constraints:
     goal time: 0.6
     stopped_velocity_tolerance: 0.07
                   No Dynamic Safety
```

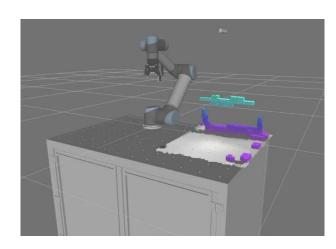
Dynamic Safety controller_manager parameters


```
controller manager:
 ros parameters:
    update rate: 500 # Hz
    joint state broadcaster:
      type: joint_state_broadcaster/JointStateBroadcaster
   pos joint traj controller:
      type: emd dynamic safety/DynamicSafetyTrajectoryController
pos joint traj controller:
 ros parameters:
   joints:
      - ur3e shoulder pan joint
      - ur3e shoulder lift joint
      - ur3e_elbow_joint
      - ur3e wrist 1 joint
      - ur3e wrist 2 joint
      - ur3e_wrist_3_joint
   constraints:
      goal time: 0.6
      stopped velocity tolerance: 0.07
   dynamic safety:
     dynamic parameterization: true
     use description server: true
     description_server: /rviz2
     environment joint states topic: "/joint states"
```

EMD Dynamic Safety Improvements


Types of Collision types supported by Dynamic Safety

- Joint encoder (i.e. another robot)
- Basic shape and meshes
- Octomap (Pointcloud)


Another Robot

Basic Shape

Octomap

Industrial Use Case: Packing and Unpacking of Products

Problem Statement

FMCG company is looking for a fully automated solution to unpack, label and pack commodities products from and into a shipping case

The Solution

- Using ROS2 EMD and EPD together with our industry partner to co-developed an end-to-end system which can unpack, label and repack
- A Shopfloor Control System that controls and orchestrate the hardware communications thru PLCs and MES system

The Challenges

- Error margin and inconsistency in ground truth detection EPD improvement and hardware limitation
- Further enhancement and stability on the ROS2 platform will be required

Project Significance

- ROS provide the opportunity for the industrial company to scale without lock-ins
- Able to support more than 22 different picking objects, each with its unique configurations
- A modular and adaptable system was established to automate the entire production system and eventually be ready for operational deployment in future

Other Industrial Use Cases

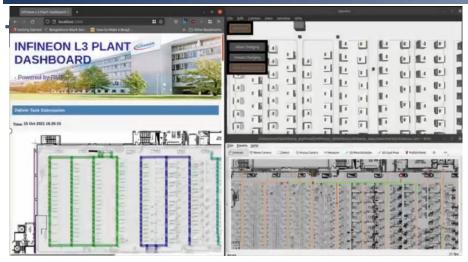
Industrial Use Case: Flexible Bin Picking

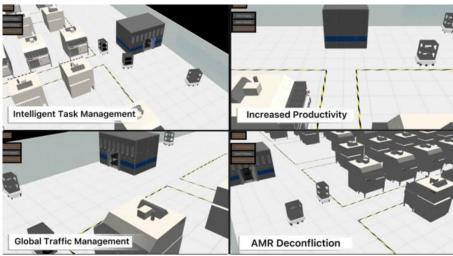
Johnson Johnson

Problem Statement

Johnson & Johnson wants to automate the picking of J&J products from Vertical Lift Modules (VLM) for faster order fulfilment

The Solution


With the use of ROS modules /packages such as Navigation, Moveit and YOLO to develop the solution


The Challenges

- Navigation stack inaccuracy by robot has to be corrected by vision
- It would be challenging to onboarding 10K SKUs in future
 Project Significance
- A Minimum Viable Product (MVP) solution was derived
- Bin picking productivity increases by 35-65% compared to manual picking – faster order fulfilment
- Full implementation planned for 2023

Industrial Use Case: RMF Simulation for Production

Problem Statement

Infineon Technologies Asia Pacific wants to develop a Robotic Middleware Framework (RMF) simulation to understand the production readiness needs if they are to embark on a fully autonomous manufacturing solution **The Solution**

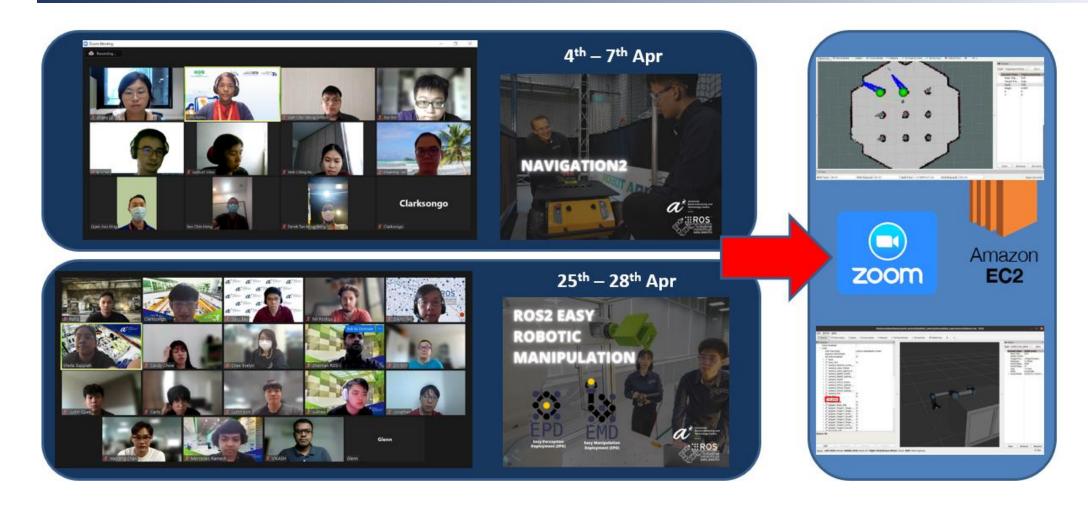
Using RMF fleet management simulating in Gazebo and creating a web user interface for task management and dashboard monitoring

The Challenges

 Some of the simulation assets were not available, and the team had to build them from scratch for a more realistic simulation

Project Significance

- Successful development of digital twin for Infineon factory shopfloor
- Served as a platform study for scalability toward actual implementation in the future



ROS Industrial Training Update

ROS2 Navigation and Easy Robotic Manipulation Trainings

Upcoming ROS Industrial AP Trainings

29th Aug to 1st Sept 2022

Scan here to register!

26th to 29th Sept 2022

Scan here to register!

Thank you!

ROS-Industrial Asia Pacific

Email: ros-i_asia@artc.a-star.edu.sg

Website: rosindustrial.org

© 2022 Advanced Remanufacturing and Technology Centre / ROS-Industrial Consortium Asia Pacific

