
ROS-Industrial and Open-Source Solutions Making a Difference on the Factory Floor

Matthew M. Robinson ROS-Industrial Americas Program Manager Southwest Research Institute

Industrial Robotics

- Silos/Vendor Lock
- Historical reliance on large-scale end-users

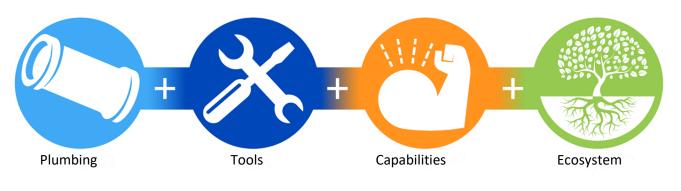
Source: RIA Yearly Statistics, robotics.org

A Disruption in Software for Automation

Enter ROS – Robot Operating System

- Open Source
- Established to prevent re-inventing the wheel
- Maintained by Open Robotics
- Reusable Software Components
- >1,000,000 user downloads/mo

is...



A **Middleware** Framework **O**r

An International A
Open-source Project
Softw
Pabe

ROS Journey to Industry

Source: Open Robotics Presentation at ROSCON 2018 (Updated)

Goals for ROS 2.0

product-ready

Use industry-standard middleware (e.g., DDS)

Build in **security** from the beginning

Support Linux, macOS, and Windows

mission-critical

Support real-time control

Static analysis (e.g., MISRA)

Document design choices

Support safety certification

...but also familiar

Keep the core concepts from ROS 1

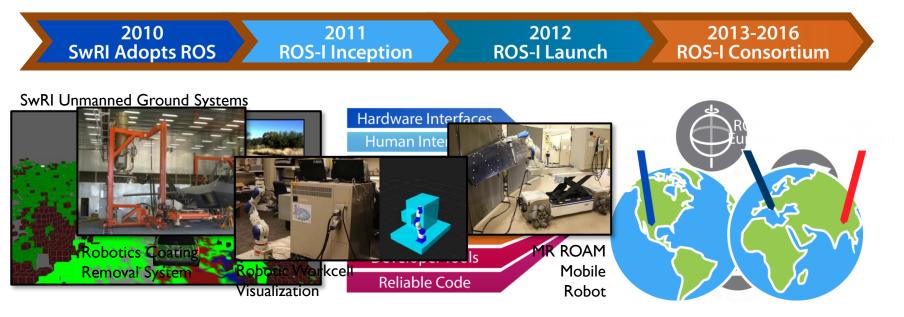
Distributed systems

Federated development

Permissive open source license – allows for commercial hybrid model

Important for mass-scale industry adoption

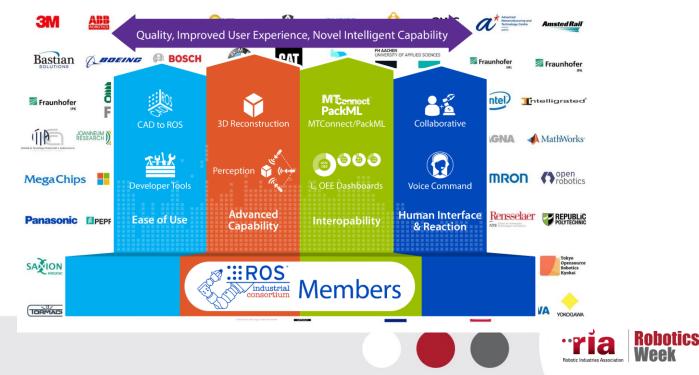
Source: Open Robotics Presentation at ROSCON 2018 (Updated)

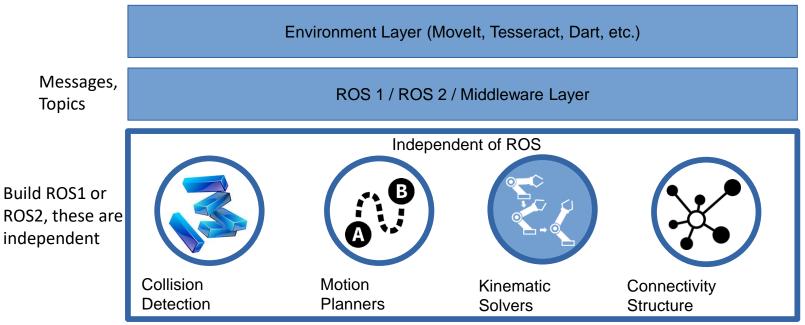


What is ROS-Industrial?

Robotic Industries Association

ROS-Industrial Timeline


Enable Global Leverage of Regional Development



Tech Vision Supported by Industry

• **ROS-Industrial Consortium** acts as an ecosystem where different players – end-users, equipment providers, system integrators, institutes of research and training partners **come together to advance and proliferate Open Source robotics**

Strategy for Development

Continue to support deployed end-user ROS1 systems with new capabilities as they are developed even if for a ROS2 solution

hntics

What Can ROS-I Do?

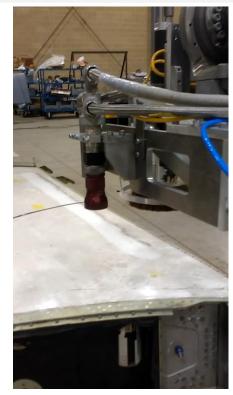
Getting Systems into Production

- Enabling foundation
- The right partners
- Plan concept through sustainment

Source: <u>https://github.com/swri-robotics/euler;</u> Basition Solutions, ProMat 2017

Evolution of Scan-N-Plan

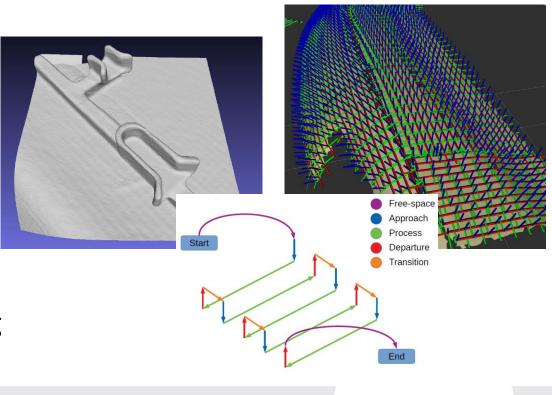
- Build up of capability since 2014
- Leverage consortium developed capability
- Foundation for production deployment



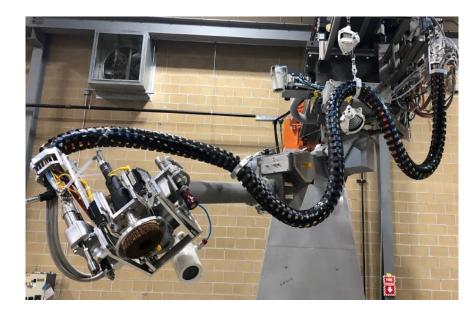
Aerospace Remanufacturing

31 fp

Intuitive Process Application – Registration, Multi-Process Planning


I. Load Part Model	
. Define Model Data	
3. Save Model Data	
1. Define Job Data	
List	Parameters
	Process Type None
	Line Spacing (m)
	Point Spacing (m) Name
	Tool Z-axis Offset (m)
	Min. Hole Size (m)
	Min. Segment Length (m)
	Intersecting Plane Height (m) 0.00
	Generate
Add M Rem	ve
5. Save Job Data	
olPathPlannerPanel Displa	15
olPathPlannerPanel Displa Time	2

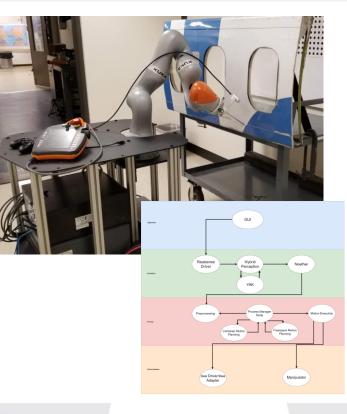
ricia Robotics Week


Open Source Leveraged

- ROS_SCXML
- YAK
- Noether
- Tesseract
 - Geometry
 - Motion Planning
 - Process Planning

Lessons Learned

- Modeling System Constraints
 - Festooning
 - DC Joint Exclusion Zones
 - Configuration
 - Limit Robot Extension
 - Numerical Rounding
 - Error Recovery


Deploying ROS2 into Production

- Leverage stated benefits of ROS2 to build production system
- Launched initial effort in early 2019
- At the time little ROS2 interface packages
 - Robots & sensor drivers
- Leveraged bridge and ported key components that were required
 - Leveraged the middleware agnostic strategy

And what happened...

- Ported motion planning pipeline Tesseract to ROS2 (pure CMake)
- Lessons learned in creating system-specific ROS2 packages
 - Greater flexibility, leverage ROS2 benefits (node lifecycle management
- DDS experience gained/optimization
- Created a demonstration system
- Put the first mobile manipulation ROS2 system into production

References: Lessons from a ROS2 Collaborative Industrial Scan-N-Plan Application, Building Out a ROS2 Mobile Scan-N-Plan Demonstration

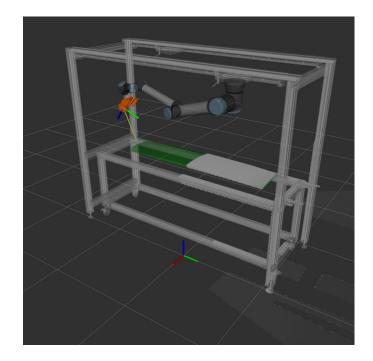
ROS2 Collaborative Development

- In collaboration with Spirit AeroSystems, NIAR at Wichita State University and the ARM Institute
- Collaborative sanding application for composite parts
- Full open-source development of a Scan- NIGR WICHITA STATE N-Plan system
 - Force-commanded constant velocity trajectory controller
 - Human marking detection and replanning

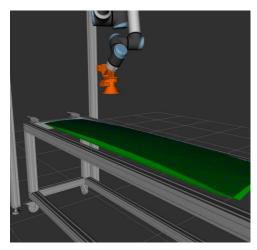
SOUTHWEST RESEARCH INSTITUTE

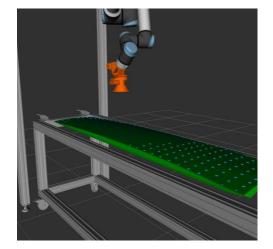
Build out complete application

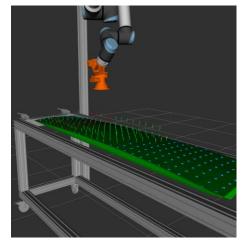
- Need at Spirit
 - Reduce cost, rapid deployment on the floor, able to work close to humans intuitively
- Leverage a deployment partner
- Leverage open-source software
- Make available code, modules, and examples to enable reuse



Full Functional Virtual Cell


- Test localization
- Sensor simulation
- Reach analysis
- Robot base optimization
- Tool path and free motion planning




Interesting new capabilities

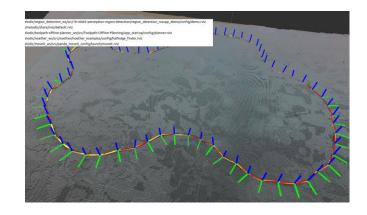
Dark Blue – Loaded toolpaths

Light Blue – Unreachable points

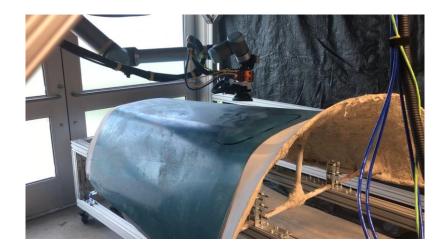

Green – Successfully planned Yellow – Skipped due to length Red – Failed collision checking

Compliance controller

- In autonomous robot path planning often seeking to reach target poses
- In force-commanded operations you need to leave target pose to reach force
- Also need to maintain velocity while maintaining force
- Leveraged an open-source package to create a force-commanded velocity constant control
- Hardware agnostic


User target Controller type specific error \vec{e} P gains \vec{e} P gains

Planning in human drawn regions


- Inspectors mark up parts
- Required that system plan to resolve areas within bounds not meeting spec
- Developed library that leverages perception system to segment out area to be processed

Integrated at NIAR

- Deploy on hardware at NIAR
- Integrate and verify software functionality
- Train NIAR and Spirit personnel on use
- Project demo slated for October 2020

Enabling Agility – A5

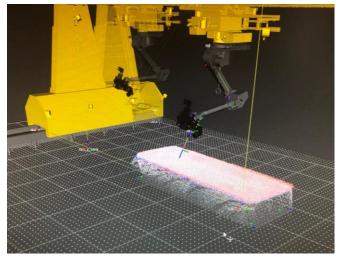
- Interest in systems that are able to do new things quickly
- Leverage mobility
- Enable port of software to different hardware configurations

A5 in action

Agile solutions in progress

- A5 is in a phase 2 that will execute NDE on inservice aircraft
- Hardening in scope for live at service depots
- Active ARM Institute projects to "port" A5 to different configurations
- Open-source code leveraged by ROS-I members in their solution developments

Removing barriers on the floor


Repository: <u>https://github.com/mtconnect/ros_mtconnect_2</u>, https://arminstitute.org/projects/seamless-multi-robotmulti-mac-interoperability/

Where we going with ROS & ROS-I?

- Grab and Go Capability
- Cross-Platform
- Assured Quality and Performance
- Non-expert Application Set Up
- Enable Solution Developer and End-User Value

GUI-Based Registration & Process Application

Take Aways

- ROS-based systems are delivering value on shop floors
- ROS2 is ready for use and offers advantage for industrial applications
- There are development partners to deploy advanced systems
- Leverage of reuseable blocks enables efficient deployment of future capability
- As a community we can have a resource to enable focus on what makes a difference for each end-user

Resources for the Community

- ROS-Industrial
 - Home: rosindustrial.org
 - Documentation: wiki.ros.org/industrial
 - Code: <u>https://github.com/ros-industrial;</u> <u>https://github.com/ros-industrial-consortium</u>
 - Training: http://ros-industrial.github.io/industrial_training/
 - ROSin: <u>http://rosin-project.eu/</u>
- Upcoming Events (<u>https://rosindustrial.org/events-summary/</u>)

Thank You

SOUTHWEST RESEARCH INSTITUTE

Matthew M. Robinson

Program Manager ROS-Industrial Consortium Americas Southwest Research Institute

Southwest Research Institut

San Antonio, TX 78248

210-522-5823

matt.Robinson@swri.org

