
Robot Raconteur: an Interoperable Middleware for Robotics
and

PyRI Open Source Teach Pendant

John Wason, Ph.D.
Wason Technology, LLC, Tuxedo, NY

June 10, 2022
https://www.robotraconteur.com/

https://github.com/robotraconteur/robotraconteur
http://pyri.tech

https://www.robotraconteur.com/
https://github.com/robotraconteur/robotraconteur
http://pyri.tech/

Webinars

Robot Raconteur: an Interoperable Middleware
June 22nd 1 pm – 3 pm EDT

PyRI (Python Restricted Industrial) Open Source Teach Pendant
June 29th 1 pm – 3 pm EDT

Webinars will consist of one hour of presentations and questions
followed by demonstrations

2

Wason

Technology

Contributors
Wason Technology, LLC
John Wason

Rensselaer Polytechnic Institute (RPI)
John Wen

Glenn Saunders

William Lawler

Honglu He

Burak Aksoy

Southwest Research (SwRI)
Levi Armstrong

Matt Robinson

General Electric
Pinghai Yang

Raytheon Technologies

Brigid Blakeslee

ARM Institute

Christopher Adams

Robot Raconteur Motivation

Rapid integration of robots, sensors, simulation packages, under various OS

ABB External Guided Motion (UDP/IP)

ABB RobotStudio (Windows)

Motoman High Speed Controller (PCI)

Baxter and Sawyer (ROS)

Universal Robotics (TCP/IP)

Kinect Azure (Windows/Linux)

ATI force/torque sensor (TCP/IP)

Soft Robotics gripper (Digital I/O)

Cognex Machine Vision (TCP/IP)

Motivation: Microassembly

• System to manipulate
microscale parts
• 50 µm – 1000 µm
• 25 µm thin

• 24 actuators

• 4 cameras

• 3 auxiliary actuators

• Force feedback joysticks

• 4 computers

• No existing middleware met
requirements

• Primary motivation and first
application of Robot
Raconteur

• Project completed in 2011

Robot Raconteur: Overview
Language, platform, transport independent communication framework
• Compatibility: 22 platforms/architectures, 7 languages, 6 transport technologies

• Client-service model

• “Augmented Object-Oriented” model
• Forward and backwards compatibility using polymorphism

• Plug and play capability

• Request-Response, streaming, and “most recent”

• TLS, certificates, and password security
• Two central certificate authority chains, by Digicert and private HSM
• Certificates available at nominal cost

• Compatible with Web and Cloud

• Node and service discovery

• Long-Term compatibility

• Open Source, Apache 2.0 License, first open source release Fall 2018

• Open Standards: https://github.com/robotraconteur/robotraconteur_standards

• Core library package “robotraconteur” available in ROS Noetic and ROS Humble

• Robot Raconteur ↔ ROS 2 Bridge: https://github.com/robotraconteur-contrib/robotraconteur_ros2_bridge

https://github.com/robotraconteur/robotraconteur_standards
https://github.com/robotraconteur-contrib/robotraconteur_ros2_bridge

Examples

7

Human Guided Dual-Arm
Manipulation

Assistive Robotics Composite Layup

Cooperative Robotics Smart Conference Room

Stretch Cooperative Robots

Arduino Uno

Example: Multi-Robot Testbed
RR web monitoring:
webcam + robot motion

5X

Quadratic-programming
motion control with
Tesseract distance
calculation for collision
avoidance

Full Video: https://youtu.be/3jhDXIRUiQY

https://youtu.be/3jhDXIRUiQY

Client-Service Model

• Service: Base object reference
with members, and references to
other objects.

• Service Definition File: Definition
of object and structure members

• Support of try/catch error
transmission across boundary
(error in service transmitted to
client, reversed for callback)

Object Ref 1

Object Ref 2

Object Ref 3

Object 1

Object 2 Object 3

Client
Node

Service
Node

Service Endpoints

Service Context

Client
Context

Tr
an

sp
or

t

Client-Service Operation
Service Side

• Starts service node

• Service node
• reads service definition file
• listens on specified end point (port, usb, etc.)
• provides the member request by client

Client Side

• Discovers service through node discovery or
known URL of Service

• Connects to Service through the URL (with
authentication: password or certificate)

• Reads Service Definition File from connected
Service and sees the exposed functionality
and data structure

• Requests the exposed members from Service.

Object Ref 1

Object Ref 2

Object Ref 3

Object 1

Object 2 Object 3

Client
Node

Service
Node

Service Endpoints

Service Context

Client
Context

Tr
an

sp
or

t

Plug and play and Interoperability

• Dynamic type and proxy handling
• Clients connecting to service receive “Service Definition”, and can dynamically

handle objects and value types

• Used for scripting languages like MATLAB and Python

• Interoperability through common or standardized “Service Definition”
• Clients are designed to connect to specific defined types. If the service

implements the expected types, the client can interact with the service

• Standardization effort underway to develop reusable types

• Deployed systems will require standardized types for interoperability
• Dynamic typing for scripting intended for laboratory and prototyping use

Standard Robot Type

• Standard robot type used for articulated robots

• Four command modes: Jog, Trajectory, Position, Velocity

• Robot Raconteur driver situated between robot and network

• Demo system: BeagleBoard x15 devices with dual ethernet ports and TI Sitara
industrial processor running Robot Raconteur drivers

BeagleBoard x15

ABB 1200

ABB EGM UDP

Client

Robot Raconteur

System Network Isolated Connection

Example Clients

from RobotRaconteur.Client import *

import time

obj=RRN.ConnectService('rr+tcp://localhost:52222/?service=Create')

obj.Drive(100,5000)

time.sleep(1)

obj.Drive(0,0)

o=RobotRaconteur.Connect('rr+tcp://localhost:52222/?service=Create');

o.Drive(int16(100),int16(5000));

pause(1);

o.Drive(int16(0),int16(0));

Python

MATLAB

LabVIEW

Robot Raconteur Libraries

• Robot Raconteur libraries:
• RobotRaconteur Core – standard library written in C++ using Boost ASIO,

wrapped with multiple languages using SWIG
• RobotRaconteur_Pyodide fork for running Python in WebAssembly

• RobotRaconteur_WinXP fork for use on Windows XP

• RobotRaconteurWeb – Pure C# implementation intended for use with Web
Browsers, ASP.NET servers and on Xamarin mobile framework
• JavaScript available using Bridge.NET C# to JavaScript compiler

• RobotRaconteurLite – ANSI C99 minimalist implementation intended for real-
time and embedded systems
• Under development, currently supports message serialization

Standardized Service Definitions

• Standard Service Definitions are used to allow interoperability between devices
• Currently mostly using the “com.robotraconteur.robotics.robot.Robot” type

• Provides for feedback on state of the robot
• Allows for four command modes:

• Jog
• Trajectory
• Velocity
• Position

• Note: Not all robots will support all command modes

• “Abstract Robot” base driver can be used with any robot that supports external
command mode (ie ABB EGM, Sawyer ROS SDK, UR RTDE, etc)
• Adding additional robot interfaces is relatively easy, typically a few hundred lines of code

• Total of 45 standard service definition files have been defined

• Group 1 frozen on April 5th, 2021
• https://github.com/robotraconteur/robotraconteur_standard_robdef

https://github.com/robotraconteur/robotraconteur_standard_robdef

Robot Raconteur Training Simulator
• Training simulator is available for

Robot Raconteur based on Gazebo

• Installs easily using conda, works on
Windows, Linux, Mac OS

• Includes:
• Two UR 5e robots

• Two simulated vacuum grippers

• Simulated camera

• Payloads

• Calibration Target

• Example Python Scripts

https://github.com/robotraconteur-contrib/robotraconteur_training_sim

https://github.com/robotraconteur-contrib/robotraconteur_training_sim

iRobot Create Training Simulator Scene
• iRobot Create with camera mast

• Designed to match example robot interface

• Used with Python examples

https://github.com/robotraconteur-contrib/robotraconteur_training_sim

https://github.com/robotraconteur/RobotRaconteur_Python_Examples

https://github.com/robotraconteur-contrib/robotraconteur_training_sim
https://github.com/robotraconteur/RobotRaconteur_Python_Examples

Open Source Teach Pendant Motivation

• Open-source ecosystems including ROS and Orocos have advanced
capabilities, but are difficult to program
• Require extensive programming expertise, often with Linux and C++
• Manufacturing organizations typically lack expertise to take advantage of these capabilities

• Robot vendors offer easier programming environment, but with limited
capabilities
• Typically use simplified text-based language or visual programming in some cases.
• Programming environment and language is typically proprietary and non-interoperable

Project Objective:

Design a modern, easy-to-use open-source programming environment and
teach pendant that can be used with equipment from any vendor

Open Source Teach Pendant Approach
• Robot Raconteur (RR) as communication

middleware (open-source)
– Build on ARM project F-18-01-F-19
– Built-in interoperability, auto-discovery, multi-OS,

encryption and authentication
– Standard RR interface to ROS devices

• Vendor-Agnostic Robot Interface
– Outer-loop robot motion command
– Independent of vendor-specific robot programming

language

• Simplified robot programming without
extensive programming experience
– Restricted Python dialect
– Blockly visual programming

• Industrial run-time environment
– Runtime environments for Python, Blockly
– Manage hardware through plugins

• Touch screen user interface
– Web browser-based implementation (Internet

connection not needed)
– Customizable GUI for equipment management

and programming

• Prototype teach pendants hardware
– Microsoft Surface Pro
– Raspberry Pi

Teach Pendant Architecture

Pyodide

• Pyodide is a Python runtime environment for
WebAssembly (https://github.com/pyodide/pyodide)

• Allows a full Python Scientific stack to run within a
web browser

• Uses Emscripten to compile to Web Assembly
• Originally started by Mozilla
• Modified to be used with Robot Raconteur to allow for connection to Robot

Raconteur services using Web Sockets

• Allows for the WebUI to be developed mostly in Python
• Re-use of almost all Python code is possible
• Unified code base between runtime and WebUI

• Vue.js is used along with Pyodide for developing interactive HTML
elements (http://vuejs.org)

https://github.com/pyodide/pyodide
http://vuejs.org/

WebUI Panels (Devices)

WebUI Panels (Jog)

WebUI Panels (Program, Blockly)
• Google Blockly visual

programming
• Simple example

program to pick up
marked cubes using
vision, and drop into
bin

• Executed in sandbox
after compilation to
Python

• Calls “sandbox
functions” to
interact with system

WebUI Panels (Program, PyRI)
• Python Restricted Dialect (PyRI)

directly written as code
• Simple example program to pick

up marked cubes using vision,
and drop into bin

• Executed in sandbox
• Essentially the same as

Blockly, but skips visual
layer

• Calls “sandbox functions” to
interact with system

• WebUI uses “Monaco Editor”
• Same editor as Visual

Studio Code IDE
• Extra softkeys to help when used

on touchscreen

Completed:
• Two Microsoft Surface version teach pendant prototypes
• One Raspberry Pi version teach pendant prototype
• Weight: ~2lb, R-Pi version is ~10% lighter
• One Runtime Computer prototype

Microsoft Surface Versions Raspberry Pi Version
Runtime Computer

Teach Pendant and Runtime Computer Hardware

Vision Guided Collaboration Tasks

Full Videos: https://youtu.be/9KSYgGpG8mk https://youtu.be/jF_BGaFI7Qc

https://youtu.be/9KSYgGpG8mk
https://youtu.be/jF_BGaFI7Qc

Simulated Pick and Place

Tesseract Planning

• Tesseract used for kinematics, path planning,
and visualization

• Currently implemented in separate PyRI module
• Will merge into primary Robotics modules

• Tesseract Python wrappers utilized
• https://github.com/tesseract-robotics/tesseract_python
• Developed by Wason Technology

• Available on PyPi and Conda for easy installation (Windows and Linux)
• PyPi: https://pypi.org/project/tesseract-robotics/

• Self contained wheel

• Conda: https://anaconda.org/Tesseract-Robotics/tesseract-robotics-superpack

https://github.com/tesseract-robotics/tesseract_python
https://pypi.org/project/tesseract-robotics/
https://anaconda.org/Tesseract-Robotics/tesseract-robotics-superpack

Try it now!

Robot Raconteur Training Sim and PyRI Open Source Teach pendant are both available as conda
packages (Windows and Linux)

mamba create -n pyri -c conda-forge -c robotraconteur -c pyri-

project robotraconteur_training_sim pyri-robotics-superpack

Install using following command in Anaconda or Miniconda (one line):

Run using:

conda activate pyri

run_2ur5e_sim

pyri-core –-db-file=my_project.db

Open Firefox and go to http://localhost:8000

http://localhost:8000/

Thank You

John Wason
Wason Technology LLC, Tuxedo, NY

wason@wasontech.com

(518) 279-6234

https://www.robotraconteur.com/
https://github.com/robotraconteur/robotraconteur
http://pyri.tech
https://github.com/pyri-project
https://github.com/robotraconteur/robotraconteur-
directory
http://wasontech.com

mailto:wason@wasontech.com
https://www.robotraconteur.com/
https://github.com/robotraconteur/robotraconteur
http://pyri.tech/
https://github.com/pyri-project
https://github.com/robotraconteur/robotraconteur-directory
http://wasontech.com/

This work was supported in part by Subaward No. ARM-17-QS-F-01, ARM-TEC-18-01-F-19, ARM-TEC-
19-01-F-24, and ARM-TEC-21-02-F-19 from the Advanced Robotics for Manufacturing ("ARM")
Institute under Agreement Number W911NF-17-3-0004 sponsored by the Office of the Secretary of
Defense. ARM Project Management was provided by Christopher Adams. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of either ARM or the Office of the Secretary of
Defense of the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes, notwithstanding any copyright notation herein.

This work was supported in part by the New York State Empire State Development Division of
Science, Technology and Innovation (NYSTAR) under contract C160142.

