ROS-Industrial Training and Conference 2016: schedule now online

fraunhofer izs - Institute center stuttgart

fraunhofer izs - Institute center stuttgart

Check out the exciting schedule for the upcoming ROS-Industrial Training and Conference 2016, to be held Nov 2-4 at Fraunhofer IPA in Stuttgart, Germany. For this year's edition of the Conference we have the pleasure to host two keynote speakers. During the first day Brian Gerkey, CEO and founder of the Open Source Robotics Foundation, will recap the history of ROS and share with the audience how advanced robotics is performed during "the era of open-source software". During the second day Prof. Michael Beetz from the University of Bremen will illustrate how knowledge-based services such as openEASE can improve interoperability in robotics and lower the barriers for robot programming. The training session has been updated as well, with our colleagues at FH Aachen delivering a full day of hands-on ROS training, and ROS-Industrial Consortium Europe members PPM AS and IT+Robotics srl providing FlexGui and cROS training during the second day. Please note that there is a significant discount if you register (registration now closed) for both events, and a further reduction for ROS-Industrial Consortium members. See you in Stuttgart on November 2-4!

Personal Letter from ROS-Industrial Founder Shaun Edwards

490A6839.JPG

After 11 years, I have decided to leave Southwest Research Institute (SwRI). It has been an incredible ride. I have had the opportunity to work on a wide range of robotics projects. I’ve worked on some of the largest robots in the world, as well as the most advanced autonomous vehicle technologies. And while it probably goes without saying on this blog; I was part of the team that launched the ROS-Industrial project. I can honestly say that Southwest Research is one of the best places to work (seriously…would your boss let you work at a Silicon Valley incubator with the goal of developing software that you just plan to give away…well mine did!).

Despite this, there are some opportunities that I have not been able to pursue in my role at SwRI. Over the past 5 years, I have promoted ROS-Industrial for new applications in the industrial robotics market. While we’ve had some success with early adopters (you know who you are – thanks for your support), it’s now time for me to fully invest myself in such an endeavor. In the coming weeks, I will be officially joining early ROS-Industrial supporter, Erik Nieves, and the team at PlusOne Robotics. PlusOne Robotics is still in stealth mode, but we plan to utilize ROS-Industrial to enable “new” collaboration between industrial robots and people in logistics applications.

I’m very excited about this opportunity, but I realize this raises some obvious questions about my role within ROS-Industrial. While things will change, nothing will change overnight. Myself, SwRI, and all the ROS-Industrial developers are committed to seeing ROS-Industrial continue on and flourish.

One of the greatest aspects of open source development is that participation is not limited to what company for which you work, but rather the value of your sweat equity. My plan is to continue my leadership role, facilitating technical planning and organization, maintenance, and community building, within ROS-Industrial as an employee of PlusOne. I endorse and support SwRI’s continued role within ROS-Industrial. As a non-profit, I believe SwRI’s leadership is essential to balancing the needs of ROS-Industrial’s stakeholders. I have been lucky to work with some great developers at SwRI, and I’m excited to see who replaces me in the near future. Without access to SwRI’s robotics facilities, I will inevitably have to transfer some package maintenance responsibilities. These maintenance responsibilities will be transferred over the next few months. If all goes as planned, then I expect this change will be mostly transparent to the ROS-Industrial community.

In closing, I’d like to reiterate my appreciation for Southwest Research Institute and the ROS-Industrial community.

If you have further questions, please don’t hesitate to email me at shaun.edwards@gmail.com

Google Summer of Code Project - ROS Interface for Impedance/Force Control

Submitted by: Risto Kojcev, IIT and Scuola Superiore Sant'Anna

As part of Google Summer of Code (GSoC) 2016 directed by the Open Source Robotics Foundation (OSRF) and ROS-Industrial (ROS-I) Consortium, we have developed a user friendly ROS Interface to control and change a manipulator into Cartesian Impedance control mode. The external forces that the robot applies to the environment can also be set with the developed interface.

Below are some of the technical details and relevant repositories that were developed as part of this project.

Our first goal was to create a set of common messages containing the necessary parameters for setting Impedance and Force control. This allows interaction between the ROS ecosystem and the ROS driver of the robot. The messages are created based on the commonly used parameters for Impedance/Force control and discussion with the ROS community. The relevant current set of ROS messages are available in the majorana repository. I would also like to encourage the Robotics community to contribute to this project by sharing their suggestions. I believe that this set of messages could still be more generalized and improved based on community input.

The second goal was to develop a user interface which allows the user to set the necessary parameters for Cartesian Impedance/Force Control and interactively switch between control modes. In this case I have expanded previous GSoC 2014 Project: Cartesian Path Planner Plug-In for MoveIt!. The updated plugin now contains the relevant UI fields for setting Cartesian Impedance and Force Control. Depending on the implementation and the properties of the robot controller, this plugin also allows interactively switching between control modes during runtime.

I would like to share my gratitude for the ROS-I community members and my mentor Shaun Edwards, who shared their suggestions during the project development. I hope that this project will find its place in many applications.

Relevant links:

3D Automatic Path Planning for Surface Grinding

Submitted by: Victor Lamoine, Institut Maupertuis

The Bezier library is a ROS tool that allows users to plan complex trajectories on 3D surfaces, and while it can be used for many purposes, it was created to generate 3D grinding trajectories. To demonstrate the usefulness of this library to industrials, we applied our latest developments on a demonstrator.

The demonstrator consists of a Fanuc robot with a grinding end effector and a table on which a shackle is laid and maintained in position. The robot first takes multiple scans with a 3D sensor to determine the position and orientation of the shackle. When the scan is over, the user can choose the grinding parameters and generate the trajectory. It is possible to simulate the trajectory before running it on the robot. The user is then able to launch the trajectory on the robot. All of these steps are summarized in this video:

This demonstrator was created as part of the Bezier project at the Institut Maupertuis. You can find more information about the Bezier library on the official repository.

Note that the library is modular and can be used for other tasks such as painting, deburring, 3D printing, or any other application that requires complex 3D path planning.

ROS-Industrial Job Opportunity at SwRI

Our team works on leading technologies in industrial robotics, and we are looking for talented and motivated candidates to join us. Do you want to work in a flexible and stimulating environment on diverse technical challenges in applied research and development? At SwRI, you will have the chance to provide technical leadership in the development and application of advanced robotic solutions for commercial and defense manufacturing clients; manage open source repositories and collaborate with international teams on open source development; design, build, debug and install industrial robotic and automation systems; develop and test new manufacturing and industrial processes; develop software for industrial controls and manufacturing systems; lead the preparation of proposals and cost estimates; interact with clients to promote new business and develop technical requirements; participate on and lead technical teams; and so much more. The possibilities are endless. Check out two job openings at SwRI: Research Engineer and Senior Research Engineer.

Education/Experience:

Requires a MS or PhD degree in Robotics, Mechanical Engineering, Electrical Engineering, Computer Science, Computer Engineering, or related field with at least a 3.5 GPA. Must have at least 5 - 15 years of experience with developing software and controls for robotics and automation and have experience with large scale C++ software development. Beneficial skills include: ROS (Robot Operating System) development, OpenCV and vision system development, optimal and search-based planning for high degree of freedom systems, open source software project management. Beneficial knowledge includes: industrial robotics, mobile robotics, 2D/3D computer vision, path planning for robotics, machine learning, optimization, perception/sensing for robot guidance, localization. Travel on an as needed basis to conduct project work. A valid/clear driver's license is required.

Special Considerations:

Applicant selected will be subject to a government security investigation and must meet eligibility requirements for access to classified information. Applicant must be a U.S. citizen.

Job Locations: San Antonio, Texas

Interested? Please apply here:
https://resapp.swri.org/ResApp/Job_Search_Results.aspx?DETAIL=10-00928

No advanced degree? Check out: https://resapp.swri.org/ResApp/Job_Search_Results.aspx?DETAIL=10-00927