Tech Workshop on MoveIt, security & skill oriented programming with ROS

The Fall edition of ROS-Industrial EU Tech Workshop took place at Fraunhofer IPA on October 09th and 10th, 2019.

We were glad to host two European MoveIt maintainers, namely Henning Kayser of ROS-Industrial Consortium member PickNik Robotics and Michael Görner from University of Hamburg. They gave us an insight into the latest developments of MoveIt (incorporating motion planning, manipulation, 3D perception, kinematics, control & navigation), current and planned developments for ROS2 (MoveIt2), and a hands-on on ROS(1)-based 'bare-metal to product'. First they presented an inside-view of the manipulation framework. Providing complementary academic and industrial perspectives, they shared their views and experiences on MoveIt's overall structure, practical deployment of planning-based pipelines, complex manipulation planning using the MoveIt Task Constructor, and upcoming future projects and ideas for a ROS2 migration. The workshop concluded with a practical session that guided the participants to setup a functional Pick&Place pipeline from a custom bare robot description. Slides and code examples are available at https://github.com/henningkayser/ROS-Industrial_EU_Fall19_MoveIt .

20191009_112123.jpg

The first session on day 2 of the ROS-Industrial EU Fall'19 Workshop was about security in ROS where Sebastian Taurer from JOANNEUM RESEARCH presented his work on a penetration testing tool for ROS1, called 'ROSPenTo', and gave an introduction on how to use SROS2 to secure communications in ROS2. In the first part of the session ROSPenTo was introduced to provide basic information on how it works and what a user can do with it. During the hands-on section the participants were guided through a step-by-step manual showing how to analyse, penetrate and modify a running ROS1 system using ROSPenTo. In the second part of the session ROS2's security tools (a.k.a. SROS2) were explained and used to setup and configure a security infrastructure. The provided examples demonstrated the creation of all necessary security artefacts (e.g. keys, certificates, etc.) and also the procedure to securely distribute the artefacts to different machines. All the related information as well as the workshop tutorial can be found here: https://github.com/jr-robotics/ROS-Industrial_EU_Fall19_Workshop

EGg33rKWoAAHuv5.jpg

The ScalABLE4.0 session at the ROS Industrial EU Fall'19 Workshop focused on presenting the set of technologies which are enabling flexibility in production lines in two industrial pilots of the automotive sector: PSA Peugeot Citroën and Simoldes Plásticos. Within the project, a complete digital manufacturing software stack is being developed, entitled 'Open Scalable Production System' (OSPS). The OSPS aims to be applied to efficiently and effectively visualize, virtualize, construct, control, maintain and optimize production lines through a tight integration of the enterprise information systems with transformable automation equipment paired up with the necessary open interfaces for optimized solutions on all hierarchy levels (slides).

20191010_091701.jpg

During the workshop, attendees were introduced and got a chance to test, interact and develop with the set of components that compose the OSPS, namely: (i) The Advanced Plant Model, which is responsible for virtually integrating data from the industrial shop floor in a centralized digital twin; (ii) The Production Manager, which is a cloud-based software module that issues and supervises the execution of manufacturing tasks; (iii) SkiROS and Task Manager, which are distinct ROS-based approaches to orchestrating the behaviour of robotic systems; (iv) The Skill-based Robot Programming methodology, which enables the reutilization and adaptation of ROS-based robotic applications to different purposes, platforms, and environments; (v) and, finally, the ROS-CODESYS bridge (ROBIN - https://github.com/ScalABLE40/robin), which enables horizontal integration between robots and automation equipment.

As part of the Scalable project, Bjarne Grossmann from AAU and cofounder of RiACT presented their skill-based robot control software SkiROS v2 (slides). Their technology is based on extended behavior trees that allows the definition of reactive behavior for highly flexible manufacturing environments. The framework is backed by a semantic database for inference and support of task planning to automatically generate complex tasks. In the hands-on session, Bjarne demonstrated the system with a SkiROS-implementation of the classical ROS turtlesim demo. He showed that SkiROS can be easily used to create complex behavior (and not only for turtles). The demo can be found on the git repository https://github.com/Bjarne-AAU/skiros-demo. Soon, there will be an official open source release of the software. Stay tuned on www.riact.eu!

Next European expert workshops will be organized in Spring and Fall 2020. We will keep you posted!

PS: Some links to upcoming events in this respect:

ROS-Industrial Consortium Europe is heading towards ROS2

With the growing excitement and curiosity surrounding ROS2, ROS-Industrial Consortium Europe (RIC-EU) had the pleasure to host the Spring 2019 edition of the RIC-EU Tech Workshop. It took place on May 6th and 7th at Fraunhofer IPA in Stuttgart, Germany. Some of the main drivers of DDS and ROS2 developments personally presented their insights and gave hands-on sessions during the event. For this, participants were provided with USB sticks with Ubuntu Bionic and ROS Melodic and ROS Crystal pre-installed (just as for all our ROS-Industrial trainings). The event has been free for worldwide members of any ROS-Industrial Consortium and was fully booked out with 40 people attending from all over Europe.

On Day 1, the workshop started with RIC-EU manager Thilo Zimmermann who welcomed the participants at Fraunhofer IPA and introduced the ROS-Industrial Consortium Europe and its EU project funding opportunity (next cut-off dates June 14 and September 13, 2019).

As ROS 2 supports multiple DDS/RTPS implementations, RIC-EU proudly hosted one of the most popular DDS vendors, eProsima, to explain the main concepts of DDS and present their stack at the workshop. During the five hours of presentations and hands-on workshops, Borja Outerelo Gamarra and Jaime Martin Losa covered topics like DDS Introduction, presentation of the standard and motivation of DDS & DDS Architecture, and DDS QoS. Attendees practised on a “hello world” example. ePROSIMA's slides can be found here.

20190506_142557[1].jpg

On Day 2, Ralph Lange from RIC-EU member BOSCH gave an in-depth presentation of the current status of ROS2. He included hands-on tasks using ROS2 and sow new features and also provided information on the upcoming d-turtle “Dashing Diademata” release on May 31, 2019. Ralph's presentation slides "Current Status of ROS2 - Hands-on Feature Overview" can be found here.

20190507_090637[1].jpg

The second presentation by Ingo Lütkebohle, also from BOSCH Corporate Research, introduced the micro-ROS activity. Ingo is one of the investigators of the EU funded OFERA project, which ports ROS2 to “extremely resource constrained devices” (usually, microcontrollers) with the new DDS XRCE standard. He demonstrated this by using a Cortex M4 board mounted on a first generation Turtlebot. Ingo's presentation slides can be found here.

20190507_113032[1].jpg

After a lunch break, Ludovic Delval of Fraunhofer IPA gave a hands-on workshop on how to migrate ROS1 node to ROS2. Lastly, Harsh Deshpande, also from Fraunhofer IPA, previewed the porting of the ur_modern_driver to ROS2 and presented a proposal for the action_bridge, which currently bridges between ROS1 action client and ROS2 action server.

At the end of the workshop, participants and ROS-Industrial Consortium members agreed that 2019 is promising a lot of developments in ROS2. In April at ROS-I Consortium Americas 2019 Annual Meeting, RIC members interacted and exhibited an interesting panel session titled “Is ROS2 Ready for the Factory Floor”. In June, Ludovic Delval of Fraunhofer IPA will present the latest updates at ROSCon France in Paris and Harsh Deshpande at the ROS-Industrial AP Workshop 2019 in Singapore.

The next RIC-EU Tech Workshop is foreseen for Fall 2019 (tentative dates October 09-10). The 2019 edition of the ROS-Industrial Conference is planned on December 10-12, 2019 (save the date!).

ROS Industrial Conference #RICEU2018 (Session 4)

From public funding opportunities to the latest technologies in software and system integration, the combination of robotics and IT to hardware and application highlights: ROS-Industrial Conference 2018 offered a varied and top-class programme to more than 150 attendees. For the sixth time already, Fraunhofer IPA organized a ROS event in Stuttgart to present the status of ROS in Europe and to discuss existing challenges.

This is the fourth instalment of a series of four consecutive blog posts, presenting content and discussions according to the sessions:

  1. EU ROS Updates (watch all talks in this YouTube playlist)
  2. Software and system integration (watch all talks in this YouTube playlist)
  3. Robotics meets IT (watch all but 1 talks in this YouTube playlist)
  4. Hardware and application highlights (watch all but 1 talks in this YouTube playlist)

Day 3 - Session “Hardware and Application Highlights“

Georg Heppner (FZI) and Fabian Fürst (Opel) At ROS-Industrial Conference 2018

Georg Heppner (FZI) and Fabian Fürst (Opel) At ROS-Industrial Conference 2018

In the fourth and final session of the ROS-Industrial Conference 2018, the focus was on hardware developments and applications implemented in industrial use cases. Fabian Fuerst, Opel, and Georg Heppner, FZI, delivered the session keynote. They presented their solution for flexible automotive assembly with industrial robotic co-workers. The application was developed as part of the EU EuRoC project. In this four-year competition, more than 100 participants initially worked on new robotic solutions for the manufacturing industry. In the course of several evaluation rounds, the team from FZI, Opel and MRK Systeme GmbH was able to assert itself successfully to the end.

During the course of the project, the FZI developed an automated robotic assembly for flexible polymer door sealings on car doors. The sealing is a closed ring, which has to be fixed with up to 40 plastic pins depending on the model, an ergonomically unfavourable task that could not be automated until now. The developed assembly cell is very flexible and open, so that the robot can be used without a safety fence. For this purpose, an external force control was developed that can be used easily and directly also for numerous other robots as a package of ROS-Industrial. The CAD-2-PATH software is used for the simple path creation for the robot. This enables a quick adjustment to other door models and does not require any expert knowledge. This is important because there are different door models and sealing types and the automation solution must be adaptable accordingly and quickly. It is notable that the application received positive assessment from Opel with regards to safety, typically a sensitive topic when applying novel tools such as ROS in automotive applications.

Paul Evans (Southwest Research Institute / ROS-Industrial North America) at ROS-Industrial Conference 2018

Paul Evans (Southwest Research Institute / ROS-Industrial North America) at ROS-Industrial Conference 2018

The presentation by Paul Evans, Southwest Research Institute and ROS-Industrial Consortium North Americas, provided current information on the activities of the North America Consortium such as strategic initiatives, trainings, and networking activities. These also focus on voices of members and include activities for the strategy alignment, for more robustness and flexibility and agility. There are also collaborations with OEMs who support ROS or develop their own drivers. At the ROS-I Consortium Americas Annual Meeting 2018, different applications were presented, for example an order batch picking robot from Bastian Solutions and a robotic system for agile aerospace applications like sanding, blending, drilling etc. for the U.S. Air Force. A last highlight that Evans presented was the ROS-I collaboration with BMW and Microsoft. While RIC-North Americas supported the evaluation of simulation environments that included physics engines the RIC-EU partners provided additional navigation support and training for mobile robots at the BMW plant to support assembly logistics. The solution is deployed on Microsoft Azure.

Mobile robots was also the topic of the lecture by Karsten Bohlmann, E&K Automation. He presented solutions for ROS on AGVs and perception-driven load handling and PLC interfaces.

Arun Damodaran (Denso) at ROS-Inudstrial Conference 2018

Arun Damodaran (Denso) at ROS-Inudstrial Conference 2018

Denso Robotics Europe was present at the conference with Arun Damodaran, who talked about Cobotta, the ROS-enabled collaborative robot. This is a six-axis arm with a reach of 342 mm, a repeatability of 0,05 mm and a payload of 500 g. It has an inherently safe design, meets all requirements for safety-standards corresponding to the ISO norms and is compliant thanks to safety-rated monitored function. Another advantage is its easy set-up and use. This is realized by the usage of the robot programming software drag&bot. Developed by the spin-off of the same name of Fraunhofer IPA, the software enables the programming of robots like Cobotta with the drag and drop principle. No expert knowledge is needed. The software is also based on ROS, works independently from any robot manufacturer and can be reused as well as shared via the cloud. Denso has been engaged in the development of ROS components and packages (simulation, control, path creating) for its robots since 2012 and now uses an open platform for controlling the Cobotta.

Felipe Garcia Lopez from Fraunhofer IPA focused on a networked navigation solution for mobile robots in industrial applications. This is particularly useful for changing environments in which mobile robots should independently select free routes. Fraunhofer IPA and Bär Automation, for example, have implemented a navigation solution for agile assembly in automobile production. With this, AGVs can locate themselves robustly and precisely based on sensor data, even without special infrastructure. This makes it possible to easily adapt existing paths or integrate new ones even after commissioning. Since the software's sensor fusion module can process data from almost any sensor, very customer-specific solutions can be implemented.

Another example is the networked navigation for smart transport robots at BMW. Here as well there were few static landmarks, a lot of dynamic obstacles and sparse sensor data in large-scale environments. A process reliability of more than 99% had to be fulfilled. The presented navigation as well as the vehicle control are ROS-based. At the end of the presentation, an outlook into Cloud-Navigation was given: Mobile robots and stationary sensors are then connected using a Cloud-based IT-infrastructure. The environment is cooperatively modelled and SLAM is used. This enables also solutions for “Navigation-as-a-service” meaning map updates and cooperative path planning for each robot. With Cloud-Navigation, local hardware and computational resources can be reduced and the quality and flexibility of the overall navigation system is enhanced.

Thomas Pilz (Pilz GmbH & Co. KG) at ROS-Inudstrial Conference 2018

Thomas Pilz (Pilz GmbH & Co. KG) at ROS-Inudstrial Conference 2018

ROS as an appropriate solution both inside and outside of industry – this was the starting point for Thomas Pilz, Managing Partner of family owned company Pilz. Combined with his own career and his experience with the first service robots, lightweight robots and robots outside production environments, he first described how the question of safety standards has changed in recent years. The definition and understanding of a robot is currently in the process of changing significantly. For Pilz, systems such as the Care-O-bot® from Fraunhofer IPA are the new upcoming robots. They operate outside of cages, are mobile and users can easily interact with them and program them using ROS. He sees ROS as a success factor for service robots because of its modular design, its standardization, additional flexibility through programming languages and its networked, interoperable system in line with Industry 4.0.

Robots that are to interact with humans are also changing the required safety technology at Pilz in the long term because all previous infrastructure such as fences is no longer required. This led Pilz to develop its own robot arm with appropriate safety technology. They use ROS modules developed by Pilz because they are breaking new ground with the development of the robot arm and can thus fall back on a broad programming knowledge base. They had nothing to lose with the new product. However, in order for them to meet the safety standards, the modules must no longer be changed in an uncontrolled manner. To improve this, Pilz recommends changing the safety standards so that they are also amenable to Open Source. Finally yet importantly, he believes that the term robot manufacturer will also change, because this role will increasingly be fulfilled by those who implement the application and no longer by those who produce the robot or components for it. In the lively discussion after the presentation, Pilz once again emphasized two arguments in favour of ROS. First: When it is said that ROS is tedious, one should bear in mind that the development of proprietary software is also difficult. Second: ROS is tedious, but fun. Pilz also sees ROS as a decisive factor for employee satisfaction and as an argument for staying with Pilz.

At the end of the conference, Gaël Blondel from the Eclipse Foundation presented the Eclipse Foundation and its Robotics Activities. The platform with around 280 corporate members, half of them from Europe, provides a mature, scalable, and business-friendly environment for open source software collaboration and innovation. Eclipse is vendor-neutral and offers a business-friendly ecosystem based on extensible platforms. They offer their own IP management and licensing but also accept other business-friendly licenses. Several working groups are particularly engaged in development processes for robotics. One example for a robotic project managed with Eclipse is the EU project RobMoSys that aims to coordinate the whole community’s best and consorted efforts to realise a step-change towards a European ecosystem for open and sustainable industry-grade software development.

At the end of the event, Mirko Bordignon and Thilo Zimmermann thanked the participants for another great and record breaking ROS-Industrial Conference. Presentations and videos of the event have been made available on the event website: https://rosindustrial.org/events/2018/12/11/ros-industrial-conference-2018

ROS Industrial Conference #RICEU2018 (Session 3)

From public funding opportunities to the latest technologies in software and system integration, the combination of robotics and IT to hardware and application highlights: ROS-Industrial Conference 2018 offered a varied and top-class programme to more than 150 attendees. For the sixth time already, Fraunhofer IPA organized a ROS event in Stuttgart to present the status of ROS in Europe and to discuss existing challenges.

This is the third instalment of a series of four consecutive blog posts, presenting content and discussions according to the sessions:

  1. EU ROS Updates (watch all talks in this YouTube playlist)
  2. Software and system integration (watch all talks in this YouTube playlist)
  3. Robotics meets IT (watch all but 1 talks in this YouTube playlist)
  4. Hardware and application highlights

Day 2 - Session “Robotics meets IT“

Henrik Christensen (UC San Diego) at ROS-Industrial Conference 2018

Henrik Christensen (UC San Diego) at ROS-Industrial Conference 2018

The third session testified the growing importance of ROS to support the development and deployment of robotic solutions from companies outside the traditional boundaries of this industry. Predominantly software players such as Amazon or Google now offer platforms leveraging ROS, which they described during the session.

Henrik Christensen, from UC San Diego and ROBO Global, gave a very inspiring keynote speech on why robotics is increasingly using cloud technologies and how it will benefit from them. He outlined three factors as current business drivers for this development: the increasing demand for flexibility in production, the aging world population and the associated increasing demand for service robots at home, and finally the trend that more and more people live in cities, posing great challenges for logistics. All robot solutions must be cost-efficient and robust at the same time in order to offer the required reliability. If computer performance always had to be on board, the hardware would often be inadequate (e.g. for slim service robots for private use) or the costs for suitable hardware would be too high (e.g. for autonomous cars).

Technologies from or in the cloud can be a solution for this. Christensen presented the value of these ecosystems using extensive market examples and explained how they differ in agility and size. Many successful companies, primarily in the USA and Asia, have shifted their business model from owning things or technologies to orchestrating them and offering services. For robotics, ROS 2.0 can be a decisive door opener here, offering the standardization required for platforms.

Milad Geravand (Bosch Engineering) at ROS-Industrial Conference 2018

Milad Geravand (Bosch Engineering) at ROS-Industrial Conference 2018

The next presentations in the session took up these and similar ideas and presented existing solutions. Milad Geravand from Bosch Engineering presented a modular software platform for mobile systems such as cleaning, off-road and intralogistics robots and how they can be developed more efficiently. In his experience, the difficulties in the development process are similar in many companies: The applications are usually very different, the software is becoming increasingly complex, a structured deployment and integration process is lacking. ROS is not yet ready for the products and the leap from prototype to series production is still too big. With the software platform presented, which is based on ROS, Bosch would therefore like to address precisely these challenges and enable uses cases to be developed quickly and reliably.

Eric Jensen, working for Canonical, the company well known for the Ubuntu Linux distribution, presented the advantages of Ubuntu Core especially with regard to security that is still an open issue for ROS. The mentioned advantages are: A minimal, transactional Ubuntu for appliances, safe and reliable updates with tests and rollbacks, app containment and isolation with managed access to resources, a unique development environment familiar for Linux developers and the possibility to easily create app stores for all devices needed. Furthermore, Ubuntu has one of the biggest developer communities in the world and is backed by Canonical itself, an important plus for security. Last but not least, the system offers automatic security warnings for the „snaps“, the special package format in Ubuntu, system audits through package verification and compliance management – all are important features for an improved security.

Roger Barga (Amazon AWS) at ROS-Inudstrial Conference 2018

Roger Barga (Amazon AWS) at ROS-Inudstrial Conference 2018

Only a few weeks before the ROS-Industrial-Conference, Amazon, for a long time far more than an e-commerce store, had introduced its new platform AWS RoboMaker, which caused a sensation beyond the ROS-Community. Roger Barga, General Manager at AWS Robotics & Autonomous Services, kindly presented this novel development at the conference. Amazon's commitment to robotics is based on discussions with around 100 companies, during which they were able to identify two main problems in robot development. On the one hand, this is a very high demand for automation solutions with simultaneous difficulties with ROS such as security or performance. On the other hand, the development process is usually very inefficient.

The RoboMaker platform addresses these requirements with its four main components. It offers a browser-based development environment, which in turn has integrated cloud extensions for ROS as well as a simulation environment. The cloud extensions range from machine learning tools to monitoring and analytics. Concrete capabilities for robots include speech recognition and output, video streaming, image and video analysis, as well as logging and monitoring with Amazon CloudWatch. The simulation environment allows thousands of simulations to be run in parallel. The fourth component is fleet management, so that robot applications can be deployed over the air. The presentation ended with a short introduction to the learning environment of RoboMaker, with which Amazon applies reinforcement learning to robots. The robots then learn according to the principle "trial and error". By merging all errors within a fleet in the cloud, a large knowledge base is quickly available and not every single robot has to make a specific error to learn from, but it benefits from the learning experiences of other robots in the fleet.

The topic of robotics in the cloud was also the focus of the lecture by Christian Henkel from Fraunhofer IPA. In his experience, the deployment of ROS-based applications on distributed systems such as mobile robots is still too great a challenge, which he would like to address in his work with docker containers (dockeROS). With his solution, it is possible to simply run ros nodes in docker containers on remote robots.

Martin Hägele (Fraunhofer IPA) moderates a panel discussion with Henrik Christensen (UC San Diego), Oliver Goetz (SAP), Michael Grupp (magazino), Niels Jul Jacobsen (MiR) and Damon Kohler (Google).

Martin Hägele (Fraunhofer IPA) moderates a panel discussion with Henrik Christensen (UC San Diego), Oliver Goetz (SAP), Michael Grupp (magazino), Niels Jul Jacobsen (MiR) and Damon Kohler (Google).

With Damon Kohler, Google Robotics and its recently presented cloud solution were also represented at the conference. In his introductory remarks, Kohler mentioned several challenges related to cloud robotics, including security, connectivity and latency, and distributing work, e.g. partitioning problems. In contrast, he sees advantages such as scalability, collaborative perception and behaviour and a robust change management and monitoring. He sees cloud robotics as a further development of the well-known principle "sense -> plan -> act" around the component "sense -> share -> plan -> act" and as an interplay of edge and cloud processing.

The aims of cloud robotics are an increased launch cadence, more data and more users and a better resource utilization. This shall be reached by infrastructure as a service, design for small and decoupled components as well as tools for automation and orchestration. The ROS nodes correspond to the Google micro-services: They are stateless and replicable, which means horizontally scalable. The container orchestration engine Kubernetes helps to deploy and release these micro-services. Several mature and robust logging and monitoring tools like Stackdriver help managing the system. The heart of the whole is the Cloud Robotics Core, being available from beginning of 2019 that enables to integrate Kubernetes on robots. Overall, Google’s vision is an open platform and a thriving ecosystem where integrators, developers, hardware developers and operators can collaborate with customers efficiently.

The second day of the conference ended with a panel discussion. The panellists were Henrik Christensen (UC San Diego), Oliver Goetz (SAP), Michael Grupp (magazino), Niels Jul Jacobsen (MiR) and Damon Kohler (Google). Moderated by Martin Hägele (Fraunhofer IPA), they summed up some advantages from their respective company perspectives, but also existing challenges of ROS and the role of open source software and robotics for their corporate strategy.

ROS Industrial Conference #RICEU2018 (Session 2)

From public funding opportunities to the latest technologies in software and system integration, the combination of robotics and IT to hardware and application highlights: ROS-Industrial Conference 2018 offered a varied and top-class programme to more than 150 attendees. For the sixth time already, Fraunhofer IPA organized a ROS event in Stuttgart to present the status of ROS in Europe and to discuss existing challenges.

This is the second instalment of a series of four consecutive blog posts, presenting content and discussions according to the sessions:

  1. EU ROS Updates (watch all talks in this YouTube playlist)
  2. Software and system integration (watch all talks in this YouTube playlist)
  3. Robotics meets IT
  4. Hardware and application highlights

Day 2 - Session “Software and System Integration Topics“

Dave Coleman (PickNik) at ROS-Industrial Conference 2018

Dave Coleman (PickNik) at ROS-Industrial Conference 2018

The second day of the conference started with the session "Software and System Integration Topics". Dave Coleman, founder of Picknik Consulting and lead maintainer of MoveIt!, opened the session with a very personal keynote about his commitment to open source software, from his student days to his role as an entrepreneur. He reported how he got in touch with the beginnings of ROS at Willow Garage and highlighted the unique spirit with which the project was incubated. He introduced the successful MoveIt! library, shared his lessons learned and the challenges which many open source projects face. As a proof of how Open Source and business can successfully coexist, he described the founding of PickNik and how the company is profitable without investors.

The following presentations were more technical and started with Víctor Mayoral Vilches, CEO of Acutronic Robotics. He talked about his company's solutions for system integration in modular systems, through the device H-ROS SoM (System on Module), used as example. In his opinion, ROS already addresses many programming needs, but system integration goes far beyond programming and requires extensive resources for each new project. He therefore sees modularity as an essential improvement. Combining the features of a real-time capable link layer made of RTOS and the Linux Network stack, and ROS 2.0, he presented the challenges and developed solutions to achieve easier system integration. He also gave insights into the use of AI to further reduce programming efforts and to train the robot instead, a technology that is still in its infancy. As part of a Focused Technical Project with ROSIN, the company also worked on the interoperability of modules.

Jon Tjerngren (ABB) at ROS-Industrial Conference 2018

Jon Tjerngren (ABB) at ROS-Industrial Conference 2018

Jon Tjerngren presented how ABB robots can be used with ROS. For this purpose, the company developed various ease-of-use packages with ROS that simplify and accelerate the setup of ABB robots. All of them are already freely available online: abb_librws can be used to off-load of computational heavy tasks, e.g. image processing. abb_libegm can be used for motion correction and as an StateMachine add-in for remote control.

ROS2 Embedded tailored to real-time operating systems was the topic of Ingo Lütkebohle’s presentation from Bosch Corporate Research. He emphasized the importance that ROS must also be integrated into the firmware. This would better address four challenges: hardware access, latency, power savings, and safety. To this end, he presented a solution developed in the OFERA project with which ROS2 can be used in microcontrollers.

André Santos from INESC TEC and University of Minho, focused on software quality. More and more robot systems are safety-critical systems, which places very high demands on the quality of the software. Finding errors in the code early on reduces costs and development time. Although there are various static analysis tools, none offers ROS-specific analysis. This is why the HAROS (High Assurance ROS) framework was developed, which is capable of extracting and, to some extent, reverse-engineering the computation graph. It also provides a visualization of the extracted graph and enables property-based testing for ROS.

Anders Billise Beck (UR) at ROS-Inudstrial Conference 2018

Anders Billise Beck (UR) at ROS-Inudstrial Conference 2018

Anders Billersoe Beck from Universal Robots was the last speaker in the second session. He introduced the new UR e-series (with integrated force/torque sensor, 500 Hz controller frequency and more new features) and how ROS supports it. For this, a new driver is developed in a Focused Technical Project of ROSIN together with the FZI, which will also remain open-source. The goal is to make a UR robot easy to use and enable plug-and-play with ROS. The driver should make two modes of operation possible: remote control and ROS URcap embedding. More supported features are calibration, a new safety system and easier programming. Beck concluded the presentation with some points that he believes are in need of improvement to make ROS ready for industrial applications. These are easier general use, proper handling of hard and soft real-time boundaries and supporting more control in edge devices.

Recap: Successful ROS-I Consortium Americas Meeting in Chicago

On April 7, the ROS-Industrial Consortium Americas hosted its annual meeting in Chicago following on the heels of the Automate show. The meeting brought together more than 60 people from across the industrial robotics industry to learn about, discuss, and plan for the future of open source software for manufacturing automation. The Consortium is now a world-wide organization led by SwRI in the Americas, Fraunhofer IPA in Europe, and A*STAR ARTC in the Asia Pacific region.

The annual meeting demarked a number of milestones for ROS-I:

The ROS-I Consortium Americas meeting brought together representatives from across industry including end users, system integrators, robot OEMs, automation equipment OEMs, and researchers.

The ROS-I Consortium Americas meeting brought together representatives from across industry including end users, system integrators, robot OEMs, automation equipment OEMs, and researchers.

The Open Source Robotics Foundation was represented by Tully Foote who took questions during an open mic session, and also led a round table roadmapping discussion about ROS/ROS 2 core.

The Open Source Robotics Foundation was represented by Tully Foote who took questions during an open mic session, and also led a round table roadmapping discussion about ROS/ROS 2 core.

Matthew Robinson from Caterpillar gave an inspiring keynote presentation on the topic of Flexible Automation for Manufacturing in Heavy Industries.

Matthew Robinson from Caterpillar gave an inspiring keynote presentation on the topic of Flexible Automation for Manufacturing in Heavy Industries.

The ROS-I Consortium is global! Each regional program manager presented an update about the progress and future plans for his/her region. Left to right: Min Ling Chan from RIC-Asia Pacific, Dr. Mirko Bordignon from RIC-Europe, and Paul Hvass from RI…

The ROS-I Consortium is global! Each regional program manager presented an update about the progress and future plans for his/her region. Left to right: Min Ling Chan from RIC-Asia Pacific, Dr. Mirko Bordignon from RIC-Europe, and Paul Hvass from RIC-Americas.

During the afternoon session, Consortium members organized into groups to discuss specific technical roadmapping thrusts. 

During the afternoon session, Consortium members organized into groups to discuss specific technical roadmapping thrusts. 

Meeting attendees also met with Focused Technical Project moderators to talk about one of the five new project topics that were introduced for 2017.

Meeting attendees also met with Focused Technical Project moderators to talk about one of the five new project topics that were introduced for 2017.

One of the chief benefits of the Consortium is the ability of members to sponsor Focused Technical Projects. These projects expand the capabilities of ROS-I and costs are shared by participating members so their resources are multiplied by their collaborators. This year, five project topics were announced and then discussed in a round table forum:

  • Collaborative Robotic Fastener Installation
  • Sensor Configuration and Calibration Assistant
  • MoveIt! Code Sprint
  • ROS-I Business Analytics Dashboard
  • Robotic Edge Processing

To learn more about the ROS-I Consortium, please visit the Join Now page.

ROS-I Consortium Annual Meeting to Feature Eight Noted Speakers

Meeting to be held April 7 in Chicago

  • Keynote speaker Matthew Robinson, Caterpillar
  • Brett Hemes, 3M
  • Trent Weiss, The Boeing Company
  • Dr. Steve Turek, Manufacturing USA
  • Tully Foote, OSRF
  • Min Ling Chan, ARTC
  • Mirko Bordignon, Fraunhofer IPA
  • Paul Hvass, SwRI
Click the image above to download a printable flier for the ROS-I Consortium Americas Annual Meeting.

Click the image above to download a printable flier for the ROS-I Consortium Americas Annual Meeting.

2nd ROS-Industrial EU Conference and RIC-EU Kick-Off

A post by Ulrich Reiser and Florian Weisshardt, Fraunhofer IPA

The ROS-I community is cordially invited to the following events:

 =============================================================
ROS-Industrial Conference and Consortium Europe kick-off
=============================================================
at Fraunhofer IPA, Stuttgart, Germany
 
June 26: ROS-Industrial conference (public)
June 27: ROS-Industrial Consortium Europe Kick-Off (restricted to RIC-EU members)
 
Conference Objectives
---------------------------
The objective of the ROS-Industrial conference is to bring together representatives from academia and industry to exchange experiences on application development with ROS and clarify the needs of industry with respect to ROS-Industrial. The participants have the opportunity to obtain most recent information on current activities, already achieved results and future goals of the ROS-Industrial community.
 
Conference Topics:
------------------------
– Developments, trends, technologies in the ROS-Industrial community
– Examples of successful transfer of ROS components established in research into industrial applications
– Current ROS-Industrial Projects (hosted by the ROS-Industrial Consortium)
 
Target Audience
--------------------
The conference addresses in particular system integrators that aim at providing flexible, economic and manufacturer independent automation solutions, ROS-Industrial developers in research and industry, executive personal of small and medium enterprises as well as R&D divisions of larger companies in the field of automation, logistics and production.
 
Speakers
------------
-    Urko Esnaola, Tecnalia
-    Andrija Feher, Synapticon GmbH
-    Clay Flannigan, Southwest Research Institute
-    Joshua Hampp, Fraunhofer IPA
-    Gijs van der Hoorn, TU Delft Robotics Institute
-    Berend Küpers, ALTEN Nederland
-    Fabrizio Romanelli, Comau S.p.A. Robotics
-    Dirk Thomas, Open Source Robotics Foundation
-    Elisa Tosello, University of Padova
-    Florian Weißhardt, Fraunhofer IPA
 
 
General Chair
-----------------
Martin Hägele, Fraunhofer IPA
 
Session Chair
-----------------
Ulrich Reiser, Fraunhofer IPA
 
Registration
-----------------
Register for ROS-Industrial conference until June 18, 2014:
http://ric-eu.rosindustrial.org/2nd-ros-industrial-conference/
 
Link to Consortium:
http://ric-eu.rosindustrial.org/consortium/
 
 
Looking forward to meeting you at both events!
 

 

2nd ROS-Industrial Community Forum

The 2nd ROS-Industrial Community Forum webinar was held on April 28, hosted by Alexander Bubeck of Fraunhofer IPA. The featured topic of the forum was the new ROS/ROS-I interface to Comau robot controllers. That topic was covered in two presentations, first by Fabrizio Romanelli of Comau, and then also by Elisa Tosello from the University of Padua, Intelligent Autonomous Systems Lab. 

Five-minute "Lightning Talks" were also given on various topics:

  • Industrial Calibration (Chris Lewis, SwRI)
  • A ROS Control overview and what it means for ROS-I (Adolfo Rodriguez Tsouroukdissian, PAL Robotics)
  • Overview of the European Robotics Challenge, (Ramez Awad, Faunhofer IPA)
  • Updates of recent developments on the BRIDE MDE toolchain, (Alexander Bubeck, Fraunhofer IPA)

ROS-Industrial Community Forums are open to the broad ROS-Industrial community and foster the dissemination of information about new ROS-Industrial capabilities and best practices. If you are interested in presenting at the next Forum, please contact us.

ROS-Industrial Consortium Americas Celebrates 20 Members!

It is our pleasure to announce that the ROS-Industrial Consortium Americas is officially 20 members strong!

Logos for the 20 official members of the Consortium, April 2014

Logos for the 20 official members of the Consortium, April 2014

Our brief history: The ROS-Industrial Open Source project began as the collaborative endeavor of Yaskawa Motoman Robotics, Southwest Research Institute, and Willow Garage to support the use of ROS for industrial automation. The software repository, originally hosted on Google Code, and now on GitHub, was founded by Shaun Edwards (SwRI) in January 2012. Led by SwRI, the ROS-Industrial Consortium Americas launched in March 2013. As you might have guessed from the name, there is also a ROS-I Consortium Europe, led by Fraunhofer IPA in Stutgart, Germany. The Consortium exists to support the ROS-Industrial community by providing training, technical support, and setting the roadmap for ROS-I.

The Consortium also fosters new open-source code creation to meet specific near term needs of members through Focused Technical Projects. Currently, three such projects are underway:

  • Robotic Blending, Milestone 1, championed by Spirit AeroSystems
  • CMM-Accelerated Robotic Routing, championed by Cessna Aircraft Company (Textron)
  • Minimum Cycle-Time Path Planning, championed by Idexx Laboratories

At the annual meeting last month, four new Focused Technical Projects were announced, and are available to join:

  • Heavy Helper
  • Multipass Robotic Welding
  • Robotic CNC Machining for Soft Materials (i.e., AL and CF)
  • Robotic Machine Tending

We are grateful to our members for their support and enthusiasm! If you are interested in learning more about the latest Focused Technical Projects, or about the Consortium in general, please contact us.

Yaskawa America - Motoman Robotics Division: RIC Member of the Week

Logo Yaskawa Motoman.jpg

What began as a collaboration between SwRI, Willow Garage, and Yaskawa America--Motoman Robotics, grew into ROS-Industrial (ROS-I). The first industrial manipulator to run an industrial robot client was a Motoman SIA 20D with DX100 controller, which would become the architecture for the driver layer in the ROS-I socket interface for manipulation. Since that first demonstration, Yaskawa has continued to support ROS-Industrial in a number of ways:

  • Assisted in development of new Moto Plus modules for both the DX100 and FS100 controllers to enable both smooth and full speed manipulation via a socket interface: http://wiki.ros.org/motoman.
  •  Joined the ROS-Industrial Consortium and presented “Why Industrial Robot OEMs Should Care about ROS” at our first Consortium meeting and at ROSCon 2013.

  • Supported a hardware demonstration of ROS-Industrial for a deburring application at ROSCon 2013.

This early involvement and support for ROS-I has made Motoman hardware hardware easy to integrate, and has led to a number of demonstrations using their hardware:

Teaser: Recently, Yaskawa has teamed with RIC EU leader Fraunhofer IPA to create a standard ROS-I interface for dual arm robots, based on guidance from a ROS-I Enhancement Proposal posted by SwRI. We will provide updates as they become available.

ROS IN DER INDUSTRIELLEN ANWENDUNG

Fraunhofer IPA to host ROS-I Seminar in Germany

The open-source “Robot Operating System” (ROS) offers highly-developed robotics software components, which can be used in flexible industrial applications. In this praxis-oriented seminar you will get in touch with the basic functionalities of the ROS framework and the ROS-Industrial initiative. Participants will get an impression about the power of the system and learn how to use it in their own application.

Dynamic environments with a variety of different work pieces create a demand for highly flexible automation solutions supported by sensors and intelligent software components. A cost efficient, reusable and powerful solution is the open-source framework ROS. It offers a huge amount of intelligent algorithms, methods and integrated libraries. An advantage is that software as well as hardware components can easily be exchanged due to a network based communication layer and standardized interfaces. One example for standardization is the simple message protocol which interfaces multiple industrial robot controllers and offers a common interface on the ROS level. Another focus of ROS-Industrial is to enhance software quality through a model-driven-engineering approach and automated testing. This allows for time efficient and cost effective software development and lowers the overall development costs.

In robotics research, ROS is already a well-established standard. The next step is to bring this power to industrial applications. For this purpose, the ROS-Industrial initiative was founded. This seminar will get participants in touch with the theoretical basics of ROS and teach how to practically use it for their own industrial application.

Ros in der Industriellen Anwendung seminar will be held March 6 at Fraunhofer IPA Campus, Nobelstrasse 12, 70569 Stuttgart, Germany, in parallel to the ROS-Industrial event at SwRI. International participants can register by email at anmeldung@stuttgarter-produktionsakademie.de referring to eventTS_RIT_140306".

Fraunhofer IPA: RIC-Americas Member of the Week

Fraunhofer IPA logo.JPG

The ROS-Industrial Consortium Europe led by the Robot and Assistive Systems department at Fraunhofer IPA (IPA), which designs robot systems and automation solutions for industrial applications and the services sector, recently has made exciting strides in the robotics industry. Among their impressive feats of engineering are the Care-O-bot 3 and rob@work 3 mobile manipulators. Check out:

IPA was an early ROS adopter, using it with the platforms mentioned above, and for a number of client-funded industrial automation projects. As SwRI sought a European collaborator for ROS-Industrial, IPA was a natural fit, given its leadership both in industrial robotics R&D, and its ROS expertise. IPA has many laudable accomplishments in the ROS community:

  • In May, they hosted ROSCon 2013, which brought together the global ROS community, and was a widely heralded success.
  • They launched an Eclipse toolkit for ROS called BRIDE, which enables model-based design for ROS (signal flowgraph drag-and-drop user interface).
  • They are contributing researchers for the Factory-in-a-Day project, which will create new agile manufacturing capabilities to address high-mix low-volume workflows; these capabilities will be made public through the ROS-Industrial repository.
  • They are leading the Lean Automation (LIAA) project, which will develop human-robot co-working capabilities based on the ROS-Industrial framework.
  • They used ROS in many earlier European research projects. Some of the code has been released through public repositories (e.g. SRS, ACCOMPANY, ect.).

There are also a couple of important upcoming events that will take place at IPA in Stuttgart:

  • March 6, 2014: 2nd ROS-Industrial Training
  • June 26th, 2014: 2nd ROS-Industrial Workshop aligned with European Consortium Kickoff Meeting

For more about the ROS-Industrial Consortium-EU, check out their website.